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Preference over Menus

Let X be a set of alternatives and A and B subsets of X, which we
interpret as menus.

The observer knows the agent’s preference between menus A and B:

either the agent strictly prefers A over B, or prefers A over B, or is
indifferent.

The observer collects a data set of menu preference pairs

M := {(At, Bt)}t∈T ,

where T is the disjoint union of S and W .

If t ∈ S, then At � Bt and if t ∈W then At % Bt.

When is this preference over menus generated by a preference over the
alternatives in X?



Rationalizing a preference over menus

A preference % over the elements in X is a complete and transitive
binary relation.

Definition. Let M := {(At, Bt}t∈T be a set of menu preference pairs.

A preference % on X rationalizes M if

there is xt ∈ At such that xt % y for all y ∈ Bt (t ∈ T ) and

xt � y for all y ∈ Bt if t ∈ S.

Given a data set M, how do we check if M is rationalizable, i.e., that
% exists?

Note: as stated, the question is non-trivial only if S is nonempty.



Rationalizing a preference over menus

Suppose that T = S, so At � Bt for all t ∈ T .

Suppose that % rationalizes M so there exists xt � Bt for all t.

Fix T ′ ⊆ T . Then there is some t∗ ∈ T ′, we have xt
∗
% xt for all

t ∈ T ′.

Then xt
∗ � y for all y ∈ B(T ′) := ∪t∈T ′Bt.

In particular, xt
∗
/∈ B(T ′), so

A(T ′) \B(T ′) is nonempty.

M satisfies the partial congruence axiom if this property holds for all
T ′ ⊆ T .

Theorem. (Fishburn, 1976)

M := {(At, Bt}t∈T , with T = S can be rationalized if and only if M
satisfies the partial congruence axiom.
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Rationalizing a preference over menus

Example.

A1 = {x, y} B1 = {r, w};

A2 = {r, y} B2 = {z, w};

A3 = {x,w} B3 = {r, y}.

Rationalization is possible with x � y � r � w � z.

Partial congruence axiom: A(T ′) \B(T ′) is nonempty for all
nonempty T ′ ⊆ T .

A1 = {x, y} B1 = {r, w};

A2 = {r, y} B2 = {x, z};

A3 = {x,w} B3 = {r, y}.

Rationalization is impossible. Indeed (∪3
i=1A

i) \ (∪3
i=1B

i) is empty.
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Rationalizing a preference over menus

But notice that

A1 = {x, y} B1 = {r, w};

A2 = {r, y} B2 = {x, z};

A3 = {x,w} B3 = {r, y}.

can be rationalized if we require A1 � B1, A2 % B2, and A3 % B3.

Then x ∼ y � r ∼ w � z rationalizes data.

So the partial congruence axiom isn’t the right property to check if
agent reports a weak preference between menus.



Rationalizing a preference over menus

Our objective is to generalize Fishburn’s result in multiple directions.

1. What if there is a weak preference between menus, i.e., At % Bt?

2. What if we are in an environment where there is a natural order
on alternatives that the preference should respect and/or when there
is a natural topology?

For example, in classical consumer theory...

3. Testing the partial congruence axiom as stated is not viable:
it requires checking if A(T ′) \B(T ′) is nonempty for all possible sets
T ′ ⊆ T .

Is there an efficient algorithm for testing this axiom?

4. Apply results to newer models of choice.
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Never-covered property

Let M = {(At, Bt)}t∈T where T = W ∪ S and S is nonempty.

Iterated deletion of strictly dominated observations:

let T ′ ⊆ T and S′ = T ′ ∩ S; define

Φ1(T ′) =
{
t ∈ T ′ : At ⊆ B(S′)

}
Φ2(T ′) =

{
t ∈ T ′ : At ⊆ B

(
S′ ∪ Φ1(T ′)

) }
Φ3(T ′) =

{
t ∈ T ′ : At ⊆ B

(
S′ ∪ Φ2(T ′)

) }
and so on.

Notice that Φ1(T ′) ⊆ Φ2(T ′) ⊆ Φ3(T ′) ⊆ Φ4(T ′) . . .

Eventually, we obtain Φm(T ′) = Φm+1(T ′). Then we stop and define
Φ(T ′) = Φm(T ′).

Suppose M is rationalized by % so there is t∗ ∈ T ′ and xt
∗ ∈ At∗ such

that xt
∗
% B(T ′) and xt

∗ � B(S′).

Then t∗ /∈ Φ1(T ′) because xt
∗
/∈ B(S′). Furthermore,

t∗ /∈ Φ2(T ′) . . . , t∗ /∈ Φ(T ′). Thus T ′ \ Φ(T ′) is nonempty.
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Never-covered property

Definition. M = {(At, Bt)}t∈T satisfies the never-covered property if

T ′ \ Φ(T ′) is nonempty for all nonempty T ′ ⊂ T .

This notion generalizes the partial congruence axiom.

Theorem. A data set of menu preference pairs M = {(At, Bt)}t∈T
(with T = W ∪ S) is rationalizable if and only if it satisfies the
never-covered property.

An algorithm?
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Algorithm for checking the never-covered property

First calculate Φ(T ) and let T 1 = Φ(T ).

Define Tn+1 := Φ(Tn).

We have T ⊇ T 1 ⊇ T 2 ⊇ T 3 ⊇ T 4 ⊇ . . ..

One of two possibilities will occur:

either we obtain m such that Tm+1 := Φ(Tm) = Tm in which the
never-covered property fails

or, we obtain m such that Tm+1 := Φ(Tm) is empty, in which case the
never-covered property holds.



Menus in consumption space R`
+

x1

x2

Kq

KrKp

0

10

Can Kp % Kq and Kq % Kr?

NO, provided preference is increasing with consumption. Reason:

if it holds, then there is x ∈ Kp such that x % y for all y ∈ Kq ∪Kr.

But impossible because every bundle in Kp is strictly inferior to
something in Kq or Kr.



Menus in consumption space

The never-covered property can be modified to incorporate various
requirements on the rationalizing preference/utility function.

Consider the case where X = R`+, the standard `-good consumption
space.

The data set is M = {(At, Bt)}t∈T , where At, Bt ⊂ R`+.

Example. At and Bt are linear budget sets.

At = {x ∈ R`+ : pt · x ≤ 1}

where pt = (pt1, p
t
2, . . . , p

t
`)� 0. (Similarly for Bt.)

Question. When can we rationalize M with a strictly increasing
preference %, i.e., a preference % where x′′ � x′ if x′′ > x′ ?



Menus in consumption space

Given a data set M = {(At, Bt)}t∈T , we can define, for any T ′ ⊆ T ,

Φ≥(T ′), the set of dominated observations in T ′

(which now depends on the product order ≥).

Definition. M satisfies the never-covered property under ≥ if
T ′ \ Φ≥(T ′) is nonempty for every nonempty T ′ ⊆ T .

Theorem. The following statements on M are equivalent:

(1) M is rationalizable by a strictly increasing preference.

(2) M satisfies the never-covered property under ≥.

(3) M is rationalizable by a preference that admits a strictly
increasing and continuous utility function.



Application 1: Rationalizing price preferences

Suppose that At = L(pt) and Bt = L(qt) – so all budget sets are
linear and can be represented by prices (with income normalized at 1).

Let M =
{

(L(pt), L(qt))
}
t∈T be a data set of price preferences.

Corollary. The following statements on M are equivalent.

(1) M can be rationalized by a strictly increasing preference.

(2) M satisfies the never-covered property under ≥.

(3) M can be nicely rationalized by a strictly increasing, continuous,
and concave utility function.

This result is the finite analog to the classical result: a function
v : R`++ → R is a bona fide indirect utility function, i.e., there exists u
such that v(p) = max{u(x) : x ∈ L(p)}, if and only v is quasi-convex.



Menus in consumption space

Iterated accumulation of strictly dominated observations:

let T ′ ⊆ T , W ′ = T ′ ∩W , S′ = T ′ ∩ S; define

Φ1
≥(T ′) =

{
t ∈ T ′ : At ⊆ B(W ′)0 ∪B(S′)

}
Φ2
≥(T ′) =

{
t ∈ T ′ : At ⊆ B(W ′)0 ∪B(S′ ∪ Φ1

≥(T ′))
}

Φ3
≥(T ′) =

{
t ∈ T ′ : At ⊆ B(W ′)0 ∪B(S′ ∪ Φ2

≥(T ′))
}

and so on until Φm+1
≥ (T ′) = Φm≥ (T ′), in which case define

Φ≥(T ′) := Φm≥ (T ′).

Straightforward to check: if M is rationalized by a strictly increasing
preference %, then never-covered property holds, i.e.,

T ′ \ Φ≥(T ′) is nonempty.



Application 2: Generalizing Afriat’s Theorem

Suppose we observe a consumer choosing a bundle xt from the budget
set

L(pt) = {x ∈ R`+ : pt · x ≤ 1}.

The data set has the form O = {(xt, L(pt))}t∈T .

Question posed by Afriat: when can we find a strictly increasing
utility function u : R`+ → R such that

u(xt) ≥ u(x) for all x ∈ L(pt)

Afriat’s Theorem. O = {(xt, L(pt))}t∈T can be rationalized by a
strictly increasing utility function if and only if it satisfies the
generalized axiom of revealed preference (GARP).



Application 2: Generalizing Afriat’s Theorem

Suppose that the observer does not observe the choice exactly but
only knows that it falls within some set

At ⊆ L(pt).

So he has access to a coarse data set O = {(At, L(pt))}t∈T .

Then the natural question is the following:

when does there exist a strictly increasing utility function u and
xt ∈ At for each t ∈ T such that u(xt) ≥ u(x) for all x ∈ L(pt)?

u exists if and only if O = {(At, L(pt))}t∈T , with T = W , satisfies the
never-covered property.



Application 2: Generalizing Afriat’s Theorem

Afriat’s Theorem, generalized.

Let O = {(At, L(pt))}t∈T be a coarse data set. Then the following
statements are equivalent.

(1) O can be rationalized by a strictly increasing preference.

(2) O satisfies the never-covered property under ≥.

(3) O can be rationalized by a preference with a utility representation
that is strictly increasing, continuous and concave.



Application of generalized Afriat’s Theorem

It is common for data sets O = {(xt, L(pt))}t∈T to violate GARP.

There are various indices devised to measure the ‘seriousness’ of the
violation.

An obvious way of doing this is to check the extent to which we need
to perturb xt so that the perturbed choice x̃t is such that

{(x̃t, L(pt)}t∈T

can be rationalized.

O is close to being rational if x̃t is not far from xt.



The perturbation index

Let Atκ = {x ∈ L(pt) : pt · x = 1 and |ptixi − ptixti| ≤ κ for all i},

where κ ∈ [0, 1].

Is Oκ = {(Atκ, L(pt))}t∈T rationalizable?

In other words, is there x̃t ∈ Atκ and an increasing utility function u
such that u(x̃t) ≥ u(x) for all x ∈ L(pt).

Oκ must be rationalizable for κ sufficiently close to 1.

Definition. The perturbation index of O = {(xt, L(pt))}t∈T is

κ∗ = min{κ : Oκ is rationalizable by an increasing preference}.



The perturbation index

x1

x2

L2

L1

0

x1

x2

A1

A2

Figure 2: The data set {(x1, L1), (x2, L2)} is not rationalizable, but
{(A1, L1), (A2, L2)} (as depicted) is rationalizable.

be in the set

At = {x ∈ L(pt, yt) : pt · x = yt and |ptixi − ptixti| ≤ kyt for all i},

where k ∈ [0, 1]. In other words, the expenditure on good i is allowed to deviate
from ptix

t
i but not by more than kyt. This is illustrated in Figure 2, where the

‘original’ data set {(x1, L1), (x2, L2)} is not rationalizable, but {(A1, L1), (A2, L2)}
(as depicted) is rationalizable. More generally, our extension of the Afriat’s Theorem
provides a way to check if O =

{
(At, L(pt, yt))

}
t∈T

is rationalizable.

6 Application: Multiple preferences
In this section, we investigate the observable restrictions of the multiple preferences
model; see, for example, Aizerman and Malishevski (1981) and Salant and Rubinstein
(2008). In contrast with the single preference model, the choice behavior of the
DM may be a result of multiple rationales. Formally, the DM has a set Π of strict
preferences, and she chooses

fΠ(A) :=
{
x : x = max(A; �) for some �∈ Π

}

in each menu A.

We represent the observed choice behavior of the DM by a data set (Σ, f), where
Σ ⊆ X and f(A) is the collection of alternatives that the DM chooses in A ∈ Σ. We

27

Original data set {(x1, L1), (x2, L2)} is not rationalizable.

But {(A1, L1), (A2, L2)} is rationalizable.

κ∗ is the smallest value so that A1 6⊆ L2.



Algorithm for checking the never-covered property

First calculate Φ(T ) and let T 1 = Φ(T ).

Define Tn+1 := Φ(Tn).

We have T ⊇ T 1 ⊇ T 2 ⊇ T 3 ⊇ T 4 ⊇ . . ..

One of two possibilities will occur:

either we obtain m such that Tm+1 := Φ(Tm) = Tm in which the
never-covered property fails

or, we obtain m such that Tm+1 := Φ(Tm) is empty, in which case the
never-covered property holds.



Computing perturbation indices
κ = 0.2 κ = 0.3

|T | 50 50
|T 1| 48 47
|T 2| 47 46
|T 3| 45 44
|T 4| 41 39
|T 5| 39 36
|T 6| 37 31
|T 7| 33 25
|T 8| 27 20
|T 9| 21 18
|T 10| 18 16
|T 11| 18 13
|T 12| 8
|T 13| 4
|T 14| 2
|T 15| 1
|T 16| 0

Table: Testing the never-covered property on one subject in the
Choi-Fisman-Gale-Kariv (2007) experiment.



Application 3: Multi-rationale behavior

Let Σ be a finite collection of subsets of X (the space of alternatives).

Let f : Σ→ X be correspondence with the property that f(A) ⊆ A.

Question: when is (Σ, f) multi-rationalizable, i.e.,

there a set Π of strict preferences such that

f(A) = {x ∈ A : x � y for all y ∈ A for some �∈ Π}.

Example. Suppose X = {x, y, z} and Σ = {{x, y}, {y, z}, {x, y, z}}.

f({x, y}) = x; f({y, z}) = y; f({x, y, z}) = {x, z}.

(Σ, f) is not multi-rationalizable.
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Application 3: Multi-rationale behavior

There is already an axiomatization of this model.

Theorem. (Aizerman and Malichevski (1981)

Let Σ = X , the set of all nonempty subsets of of X (the space of
alternatives).

Then the correspondence f : X → X, where f(A) ⊆ A for all A ∈ X is
multi-rationalizable if and only if it satisfies the following two
conditions:

A ⊆ B ⇒ f(B) ∩A ⊆ f(A) for all A,B ∈ X (Chernoff);

f(B) ⊆ A ⊆ B ⇒ f(A) ⊆ f(B) for all A,B ∈ X (Aizerman).

Our question:

How do we characterize multi-rationalizability when Σ 6= X ?
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Application 3: Multi-rationale behavior

Suppose (Σ, f) is multi-rationalizable.

Then for a given A ∈ Σ and x ∈ f(A), there is �∈ Π such that x is
optimal in A according to �. Thus

MA,x := {(x,A \ x)} ∪
{

(f(A′), g(A′))
}
A′∈Σ, A′ 6=A

must be rationalizable by a strict preference.
(All menu preference pairs are strict and g(A′) := A′ \ f(A′).)

Conversely, if MA,x is rationalizable by some strict preference �A,x,
then

Π = {�A,x: A ∈ Σ, x ∈ f(A)}

would multi-rationalize (Σ, f).
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Application 3: Multi-rationale behavior

Theorem. The following statements on (Σ, f) are equivalent.

(1) (Σ, f) is multi-rationalizable.

(2) For each A ∈ Σ and x ∈ f(A),

MA,x := {(x,A \ x)} ∪
{

(f(A′), g(A′))
}
A′∈Σ, A′ 6=A

is rationalizable as strict menu preference pairs.

(3) For any nonempty Σ′ ⊆ Σ and B ∈ Σ,(
∪A∈Σ′ f(A) \ ∪A∈Σ′ g(A)

)
⊆ B =⇒ f(B) ∩

(
∪A∈Σ′ g(A)

)
= ∅.

The last condition can be checked by an efficient algorithm.



Conclusion

For a data set of menu preference pairs

M := {(At, Bt)}t∈T ,

we provide an implementable way of testing if it is rationalizable.

The paper gives four applications of our basic result:

(1) A characterization of indirect preference (i.e preference over
prices) on finite data.

(2) A generalization of Afriat’s Theorem to data sets with imperfectly
observed choices.

(3) A test of the multiple preferences model.

(4) A test of choice behavior generated by minimax regret.


