Comparative statics with linear objectives: normal demand, monotone marginal costs and ranking multi-prior beliefs

Pawel Dziewulski and John K.-H. Quah

Definition: A partially ordered set (X, \ge_X) is a lattice if every two elements has a least upper bound (supremum) and a greatest lower bound (infimum).

We denote the supremum of x and y by $x \lor y$ and their infimum by $x \land y$.

Example 1: (\mathbb{R}^{ℓ}, \ge) is a lattice, where \ge is the product order, i.e. $x \ge y$ if $x_i \ge y_i$ for $i = 1, 2, ..., \ell$. Indeed,

$$\begin{array}{lll} x \lor y &=& (\max\{x_1, y_1\}, \max\{x_2, y_2\}, ..., \max\{x_{\ell}, y_{\ell}\}) \\ x \land y &=& (\min\{x_1, y_1\}, \min\{x_2, y_2\}, ..., \min\{x_{\ell}, y_{\ell}\}). \end{array}$$

Definition: A partially ordered set (X, \ge_X) is a lattice if every two elements has a least upper bound (supremum) and a greatest lower bound (infimum).

We denote the supremum of x and y by $x \lor y$ and their infimum by $x \land y$.

Example 1: (\mathbb{R}^{ℓ}, \ge) is a lattice, where \ge is the product order, i.e. $x \ge y$ if $x_i \ge y_i$ for $i = 1, 2, ..., \ell$. Indeed,

$$\begin{array}{lll} x \lor y &= & (\max\{x_1, y_1\}, \max\{x_2, y_2\}, ..., \max\{x_{\ell}, y_{\ell}\}) \\ x \land y &= & (\min\{x_1, y_1\}, \min\{x_2, y_2\}, ..., \min\{x_{\ell}, y_{\ell}\}). \end{array}$$

Example 2: Distributions on $S \subset \mathbb{R}$ is a lattice when ordered by first order stochastic dominance.

$$\begin{array}{lll} (\lambda \lor \lambda')(s) &=& \min\{\lambda(s), \lambda'(s)\}\\ (\lambda \land \lambda')(s) &=& \max\{\lambda(s), \lambda'(s)\} \end{array}$$

Let (X, \ge_X) be a lattice.

A function $f:(X, \ge_X) \to \mathbb{R}$ is a supermodular function if, for any x, x' in X,

 $f(x \land x') + f(x \lor x') \ge f(x) + f(x').$

Let (X, \ge_X) be a lattice.

A function $f:(X, \ge_X) \to \mathbb{R}$ is a supermodular function if, for any x, x' in X,

$$f(x \wedge x') + f(x \vee x') \ge f(x) + f(x').$$

For $f : (\mathbb{R}^{\ell}_+, \ge) \to \mathbb{R}$, supermodularity is equivalent to the following: for any $i \in \{1, 2, ..., \ell\}$, with $x''_i > x'_i$,

 $f(x_i'', x_{-i}) - f(x_i', x_{-i})$ is increasing in x_{-i} .

If f is a production function, this says that the marginal productivity of factor i increases as the input of other factors, x_{-i} is raised.

Let (X, \ge_X) be a lattice.

A function $f:(X, \ge_X) \to \mathbb{R}$ is a supermodular function if, for any x, x' in X,

$$f(x \wedge x') + f(x \vee x') \ge f(x) + f(x').$$

For $f : (\mathbb{R}^{\ell}_+, \ge) \to \mathbb{R}$, supermodularity is equivalent to the following: for any $i \in \{1, 2, ..., \ell\}$, with $x''_i > x'_i$,

 $f(x_i'', x_{-i}) - f(x_i', x_{-i})$ is increasing in x_{-i} .

If f is a production function, this says that the marginal productivity of factor i increases as the input of other factors, x_{-i} is raised.

If f is differentiable, the supermodularity of f is equivalent to

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x) \ge 0 \text{ for all } x, \text{ and } i \neq j.$$

Let A and B be two nonempty subsets in lattice (X, \ge_X) .

B dominates A in the strong set order if for any $x \in A$ and $x' \in B$,

 $x \lor x' \in B$ and $x \land x' \in A$.

We denote this by $B \geq A$.

This implies that *B* is higher than *A* in the following sense:

for any $x \in A$, there is $\hat{x} \in B$ such that $\hat{x} \ge x$ (choose $\hat{x} = x \lor x'$) and for any $x' \in B$ there is $\tilde{x} \in A$ such that $x' \ge \tilde{x} \in B$ (choose $\tilde{x} = x \land x'$).

Basic MCS Theorem.

Suppose $\eta: X \to \mathbb{R}$ is a supermodular function and $B \ge A$. Then

```
\operatorname{argmax}_{x\in B}\eta(x) \ \geq \ \operatorname{argmax}_{x\in A}\eta(x).
```

Basic MCS Theorem.

Suppose $\eta: X \to \mathbb{R}$ is a supermodular function and $B \ge A$. Then

$$\operatorname{argmax}_{x\in B}\eta(x) \geq \operatorname{argmax}_{x\in A}\eta(x).$$

Example. A firm maximizes profit $\eta(x) = F(x) - p \cdot x$,

where $x \in \mathbb{R}^{\ell}_+$ is the vector of inputs and $p \in \mathbb{R}^{\ell}_{++}$ are the factor prices. Let $A = \{x \in \mathbb{R}^{\ell}_+ : x_1 \leq M\}$ and $B = \mathbb{R}^{\ell}_+$. Then $B \geq A$.

If F is supermodular, then so is η is supermodular.

Theorem says that more of *all* factors will be employed if the constraint on increasing factor 1 is removed.

Application of this result is limited because constraint sets are often not ranked according to the strong set order.

Example. At price $p \in \mathbb{R}_{++}^{\ell}$ and income w > 0, a consumer's budget set is $B(p, w) = \{x \in \mathbb{R}_{+}^{\ell} : p \cdot x \leq w\}$. Suppose w'' > w': it is *not* the case that $B(p, w'') \ge B(p, w')$. Indeed, if $x' \in B(p, w')$ and $x'' \in B(p, w'')$, it is possible that $p \cdot (x' \lor x'') > w''$ and hence $x' \lor x'' \notin B(p, w'')$.

Application of this result is limited because constraint sets are often not ranked according to the strong set order.

Example. At price $p \in \mathbb{R}_{++}^{\ell}$ and income w > 0, a consumer's budget set is $B(p, w) = \{x \in \mathbb{R}_{+}^{\ell} : p \cdot x \leq w\}$. Suppose w'' > w': it is *not* the case that $B(p, w'') \ge B(p, w')$. Indeed, if $x' \in B(p, w')$ and $x'' \in B(p, w'')$, it is possible that $p \cdot (x' \lor x'') > w''$ and hence $x' \lor x'' \notin B(p, w'')$.

Quah (2007, Ecta) deals with this issue: obtains comparative statics by weakening the notion of set comparisons and strengthening the requirements on the objective function η .

This approach leads to a sufficient, but not necessary, condition for normal demand.

This paper provides a *characterization* of normal demand.

We strengthen the condition on the objective function $\boldsymbol{\eta}$ even more.

We assume η is a *linear function*.

Question: what condition linking A and B guarantees that

 $\operatorname{argmax}_{x \in B} \eta(x)$ is higher than $\operatorname{argmax}_{x \in A} \eta(x)$ (in some natural sense)?

We strengthen the condition on the objective function η even more. We assume η is a *linear function*.

Question: what condition linking A and B guarantees that argmax_{x∈B} $\eta(x)$ is higher than argmax_{x∈A} $\eta(x)$ (in some natural sense)?

Example. Let $F : \mathbb{R}^{\ell}_+ \to \mathbb{R}_+$ be production function.

Let $B = \{x \in \mathbb{R}^{\ell}_+ : F(x) \ge q''\}$ and $A = \{x \in \mathbb{R}^{\ell}_+ : F(x) \ge q'\}$, where q'' > q'.

Then $\operatorname{argmin}_{x \in B} p \cdot x$ and $\operatorname{argmin}_{x \in A} p \cdot x$ is the conditional factor demand at output q'' and q' respectively, where $p \in \mathbb{R}_{++}^{\ell}$ are the factor prices.

What restriction on F guarantee that factor demand is normal, i.e., increases with output (in some sense)?

Let the set of parameters be a poset (T, \ge) .

Definition. The correspondence $\Gamma : T \to \mathbb{R}^{\ell}$ is increasing in the strong set order if for any $t' \ge t$, $x \in \Gamma(t)$, $x' \in \Gamma(t')$, we have $x \lor x' \in \Gamma(t')$ and $x \land x' \in \Gamma(t)$.

Let the set of parameters be a poset (T, \ge) .

Definition. The correspondence $\Gamma : T \to \mathbb{R}^{\ell}$ is increasing in the strong set order if for any $t' \ge t$, $x \in \Gamma(t)$, $x' \in \Gamma(t')$, we have $x \lor x' \in \Gamma(t')$ and $x \land x' \in \Gamma(t)$.

Definition. $\Gamma : T \to \mathbb{R}^{\ell}$ satisfies the parallelogram property if for any $t' \ge t$ and $x \in \Gamma(t)$, $x' \in \Gamma(t')$, there is $y \in \Gamma(t)$, $y' \in \Gamma(t')$ such that

$$x' \ge y, y' \ge x$$
 and $x + x' = y + y'$.

Note: If $\Gamma : T \to \mathbb{R}^{\ell}$ is increasing in the strong set order then Γ has the parallelogram property. Choose $y = x \land x'$ and $y' = x \lor x'$.

Let the set of parameters be a poset (T, \ge) .

Definition. The correspondence $\Gamma : T \to \mathbb{R}^{\ell}$ is increasing in the strong set order if for any $t' \ge t$, $x \in \Gamma(t)$, $x' \in \Gamma(t')$, we have $x \lor x' \in \Gamma(t')$ and $x \land x' \in \Gamma(t)$.

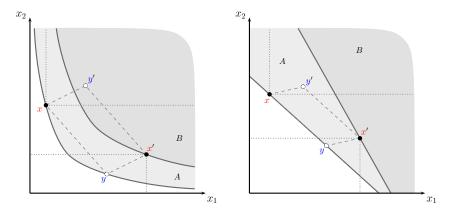
Definition. $\Gamma : T \to \mathbb{R}^{\ell}$ satisfies the parallelogram property if for any $t' \ge t$ and $x \in \Gamma(t)$, $x' \in \Gamma(t')$, there is $y \in \Gamma(t)$, $y' \in \Gamma(t')$ such that

$$x' \ge y, y' \ge x$$
 and $x + x' = y + y'$.

Note: If $\Gamma : T \to \mathbb{R}^{\ell}$ is increasing in the strong set order then Γ has the parallelogram property. Choose $y = x \land x'$ and $y' = x \lor x'$.

Definition. The correspondence $\Gamma : T \to \mathbb{R}^{\ell}$ satisfies increasing property if for any $t' \ge t$ and $x \in \Gamma(t)$, $x' \in \Gamma(t')$, there is $y \in \Gamma(t)$, $y' \in \Gamma(t')$ such that $x' \ge y$ and $y' \ge x$.

Definition. Let correspondence $\Gamma : T \to \mathbb{R}^{\ell}$ satisfies parallelogram property if for any $t' \ge t$ and $x \in \Gamma(t)$, $x' \in \Gamma(t')$, there is $y \in \Gamma(t)$, $y' \in \Gamma(t')$ such that $x' \ge y$, $y' \ge x$ and



Parallelogram property satisfied on the left but not the right.

9 / 44

$$x + x' = y + y$$

Our Basic Result

Main Theorem. Let T be a poset and $\Gamma : T \to \mathbb{R}^{\ell}$ be a convex-valued correspondence. The following statements are equivalent.

- 1. The correspondence $\boldsymbol{\Gamma}$ satisfies parallelogram property.
- 2. For any $p \in \mathbb{R}^{\ell}$, the correspondence $\Phi : \mathcal{T} \to \mathbb{R}^{\ell}$, given by

$$\Phi(t) := \operatorname{argmin} \Big\{ p \cdot x : x \in \Gamma(t) \Big\},$$

satisfies the parallelogram property.

3. For any $p \in \mathbb{R}^{\ell}$, the correspondence Φ satisfies the increasing property.

Our Basic Result

Main Theorem. Let T be a poset and $\Gamma : T \to \mathbb{R}^{\ell}$ be a convex-valued correspondence. The following statements are equivalent.

- 1. The correspondence $\boldsymbol{\Gamma}$ satisfies parallelogram property.
- 2. For any $p \in \mathbb{R}^{\ell}$, the correspondence $\Phi : \mathcal{T} \to \mathbb{R}^{\ell}$, given by

$$\Phi(t) := \operatorname{argmin} \Big\{ p \cdot x : x \in \Gamma(t) \Big\},$$

satisfies the parallelogram property.

3. For any $p \in \mathbb{R}^{\ell}$, the correspondence Φ satisfies the increasing property.

Furthermore, suppose Γ is upward comprehensive (so $x \in \Gamma(t)$ implies $x' \in \Gamma(t)$ for any x' > x). Then

1 is implied by 3': for any $p \in \mathbb{R}^{\ell}_{++}$, Φ satisfies the increasing property.

Application 1: Normal factor demand

Let $F : \mathbb{R}^{\ell}_+ \to \mathbb{R}_+$ be an increasing and quasiconcave production function. We say that F has the parallelogram property if $\Gamma : \mathbb{R}_+ \to \mathbb{R}^{\ell}_+$ given by

$$\Gamma(q) = \{ x \in \mathbb{R}^{\ell}_+ : F(x) \ge q \}$$

has the parallelogram property.

Immediate application of our Main Theorem:

 Γ satisfies parallelogram property if and only if conditional factor demand

$$\Phi(q) := \operatorname{argmin} \Big\{ p \cdot x : x \in \Gamma(q) \Big\},\$$

satisfies the parallelogram property at every $p \in \mathbb{R}_{++}^{\ell}$.

In particular, Φ is increasing with respect to q.

Proof that if Γ satisfies parallelogram property then so does Φ , where

$$\Phi(t) := \operatorname{argmin} \Big\{ p \cdot x : x \in \Gamma(t) \Big\}.$$

Take any $p \in \mathbb{R}^{\ell}$, $t' \ge t$, $x \in \Phi(t)$, and $x' \in \Phi(t')$.

Since $x \in \Gamma(t)$, $x' \in \Gamma(t')$, the parallelogram property on Γ guarantees that there is $y \in \Gamma(t)$ and $y' \in \Gamma(t')$ such that x + x' = y + y' and $x' \ge y$, $y' \ge x$.

Since $y \in \Gamma(t)$ and $x \in \Phi(t)$, it must be $p \cdot y \ge p \cdot x$.

Similarly, $p \cdot y' \ge p \cdot x'$. Thus,

$$p\cdot(y+y') \ \geqslant \ p\cdot(x+x') \ = \ p\cdot(y+y'),$$

which holds only if $p \cdot y = p \cdot x$ and $p \cdot y' = p \cdot x'$.

Therefore, $y \in \Phi(t)$ and $y' \in \Phi(t')$. QED

Main Theorem. Let T be a poset and $\Gamma : T \to \mathbb{R}^{\ell}$ be a convex-valued correspondence. The following statements are equivalent.

- 1. The correspondence Γ satisfies parallelogram property.
- 2. For any $p \in \mathbb{R}^{\ell}$, the correspondence $\Phi : T \to \mathbb{R}^{\ell}$, given by

$$\Phi(t) := \operatorname{argmin} \Big\{ p \cdot y : y \in \Gamma(t) \Big\},\$$

satisfies the parallelogram property.

3. For any $p \in \mathbb{R}^{\ell}$, the correspondence Φ satisfies the increasing property.

Main Theorem. Let T be a poset and $\Gamma : T \to \mathbb{R}^{\ell}$ be a convex-valued correspondence. The following statements are equivalent.

- 1. The correspondence Γ satisfies parallelogram property.
- 2. For any $p \in \mathbb{R}^{\ell}$, the correspondence $\Phi : T \to \mathbb{R}^{\ell}$, given by

$$\Phi(t) := \operatorname{argmin} \Big\{ p \cdot y : y \in \Gamma(t) \Big\},\$$

satisfies the parallelogram property.

3. For any $p \in \mathbb{R}^{\ell}$, the correspondence Φ satisfies the increasing property.

The value function $f : \mathbb{R}^{\ell} \times T \to \mathbb{R}$ is given by

$$f(p,t) := \min \{ p \cdot y : y \in \Gamma(t) \},\$$

Definition. The value function f has increasing differences in (p, t) if, for any $t' \ge t$, f(p, t') - f(p, t) is increasing in p.

In the production context, f(p,q) is the cost of producing q.

f has increasing differences means that marginal cost

f(p,q') - f(p,q) increasing with factor prices p.

Main Theorem. Let T be a poset and $\Gamma : T \to \mathbb{R}^{\ell}$ be a convex-valued correspondence. The following statements are equivalent.

- 1. The correspondence $\boldsymbol{\Gamma}$ satisfies parallelogram property.
- 2. For any $p \in \mathbb{R}^{\ell}$, the correspondence $\Phi : \mathcal{T} \to \mathbb{R}^{\ell}$, given by

$$\Phi(t) := \operatorname{argmin} \Big\{ p \cdot y : y \in \Gamma(t) \Big\},$$

satisfies the parallelogram property.

- 3. For any $p \in \mathbb{R}^{\ell}$, the correspondence Φ satisfies the increasing property.
- 4. The value function $f : \mathbb{R}^{\ell} \times T \to \mathbb{R}$, given by

$$f(p,t) := \min \{ p \cdot y : y \in \Gamma(t) \},\$$

has increasing differences in (p, t).

Application 1: Normal Factor Demand and Monotone Marginal Cost

Theorem. Let $F : \mathbb{R}_+^{\ell} \to \mathbb{R}_+$ be an increasing and quasiconcave production function. The following statements are equivalent.

1. F satisfies the parallelogram property.

2. For any $p \in \mathbb{R}_{++}^{\ell}$, the factor demand correspondence $\Phi : \mathbb{R}_{+} \to \mathbb{R}^{\ell}$, given by

$$\Phi(q) := \operatorname{argmin} \Big\{ p \cdot y : F(y) \ge q \Big\}, \tag{1}$$

satisfies the parallelogram property.

3. For any $p \in \mathbb{R}_{++}^{\ell}$, factor demand Φ satisfies the increasing property.

4. The cost function $f(p,q) := \min \{ p \cdot y : F(y) \ge q \}$,

has increasing differences.

(In other words, marginal cost increases with p.)

Application 2: Normal Marshallian Demand

Suppose the utility function $u : \mathbb{R}^{\ell}_{+} \to \mathbb{R}$ is increasing and concave. We say u has the parallelogram property if $\Gamma : \mathbb{R} \to \mathbb{R}^{\ell}_{+}$ given by $\Gamma(t) = \{x \in \mathbb{R}^{\ell}_{+} : u(x) \ge t\}$ has the parallelogram property. Hicksian Demand is $H(t) := \operatorname{argmin} \{p \cdot x : u(x) \ge t\}$.

By the previous theorem, we obtain

Theorem. Hicksian Demand satisfies parallelogram property at every $p \in \mathbb{R}_{++}^{\ell}$ if and only if *u* satisfies the parallelogram property.

The Marshallian Demand correspondence is

$$D(p, w) = \operatorname{argmax}\{u(x) : x \in B(p, w)\}.$$

Application 2: Normal Marshallian Demand

If utility function is continuous and locally nonsatiated, then

$$D(p,w) = H(p,v(p,w))$$

where v(p, w) = u(D(p, w)) is the indirect utility at (p, w).

This identity allows us to translate results from Hicksian Demand to Marshallian Demand.

Application 2: Normal Marshallian Demand

If utility function is continuous and locally nonsatiated, then

$$D(p,w) = H(p,v(p,w))$$

where v(p, w) = u(D(p, w)) is the indirect utility at (p, w).

This identity allows us to translate results from Hicksian Demand to Marshallian Demand.

Theorem. Let utility $u : \mathbb{R}^{\ell}_+ \to \mathbb{R}$ be continuous, increasing and quasiconcave. The following statements are equivalent.

1. *u* satisfies the parallelogram property.

2. For any price $p \in \mathbb{R}_{++}^{\ell}$, the Marshallian demand correspondence $D(p, \cdot) : \mathbb{R}_{+} \to \mathbb{R}_{+}^{\ell}$ satisfies the parallelogram property.

3. There is a function $d : \mathbb{R}_{++}^{\ell} \times \mathbb{R}_{+} \to \mathbb{R}$ such that $d(p, w) \in D(p, w)$, for all (p, w), and $d(p, w') \ge d(p, w)$, for all p and $w' \ge w$.

Functions satisfying parallelogram property

What functions $F : \mathbb{R}^{\ell}_+ \to \mathbb{R}$ satisfy the parallelogram property?

1. F is homothetic/homogeneous of degree k > 0.

2. F is supermodular and concave; for example,

 $F(x_1, x_2) = \sqrt{x_1 x_2} + \ln x_2 + x_1.$

Functions satisfying parallelogram property

What functions $F : \mathbb{R}^{\ell}_+ \to \mathbb{R}$ satisfy the parallelogram property?

1. F is homothetic/homogeneous of degree k > 0.

2. *F* is supermodular and concave; for example,

$$F(x_1, x_2) = \sqrt{x_1 x_2} + \ln x_2 + x_1.$$

3. Suppose $f_k : \mathbb{R}^{\ell_k} \to \mathbb{R}$ satisfies the parallelogram property for each k = 1, 2, ..., n and let G be a supermodular and concave function. Then

$$F(x_1, x_2, \ldots, x_n) = G(f_1(x_1), f_2(x_2), \ldots, f_n(x_n))$$

satisfies the parallelogram property.

4. Let $g: \mathbb{R}^2_+ \to \mathbb{R}$ be concave and supermodular. Then

$$F(x_1, x_2, x_3, x_4) = g(x_4(g(x_3, g(x_2, x_1))))$$

satisfies the parallelogram property. For example,

$$F(x_1, x_2, x_3) = \sqrt{x_1} + \sqrt{\sqrt{x_2} + \sqrt{x_3}}.$$

First order stochastic dominance: the EU case

Let $\mathcal F$ be the collection of distributions on $S \subset \mathbb R$

Let (T, \ge) be set of parameters and let $\lambda : T \to \mathcal{F}$ be a function.

Definition: λ is increasing in first order stochastic dominance if $\lambda(t') \leq \lambda(t)$ whenever t' > t.

Basic Result 1: λ is FSD-increasing if and only if

$$\int_{S} g(s) \, d\lambda(s,t') \geqslant \int_{S} g(s) d\lambda(s,t)$$

for all increasing functions $g: S \to \mathbb{R}$ and t' > t.

First order stochastic dominance: the EU case

Let $\mathcal F$ be the collection of distributions on $S \subset \mathbb R$

Let (T, \ge) be set of parameters and let $\lambda : T \to \mathcal{F}$ be a function.

Definition: λ is increasing in first order stochastic dominance if $\lambda(t') \leq \lambda(t)$ whenever t' > t.

Basic Result 1: λ is FSD-increasing if and only if

$$\int_{S} g(s) \, d\lambda(s,t') \geqslant \int_{S} g(s) d\lambda(s,t)$$

for all increasing functions $g: S \to \mathbb{R}$ and t' > t.

Let $\Lambda: \mathcal{T} \to \mathcal{F}$ be a convex-valued correspondence. How do we guarantee that

$$\min\left\{\int_{S} g(s) d\lambda(s) : \lambda \in \Lambda(t')\right\} \ge \min\left\{\int_{S} g(s) d\lambda(s) : \lambda \in \Lambda(t)\right\}$$

for all increasing functions $g: S \to \mathbb{R}$ and t' > t?

First order stochastic dominance: the MEU case

Definition: Let $\Lambda : T \to \mathcal{F}$ be a correspondence.

A is FSD-increasing if, for all t' > t, the following holds:

for all $\lambda' \in \Lambda(t')$ there is $\lambda \in \Lambda(t)$ such that $\lambda' \gtrsim_{FSD} \lambda$.

Theorem: The function

$$G(t) = \min\left\{\int_{S} g(s) d\lambda(s) : \lambda \in \Lambda(t)\right\}$$

is increasing in t for increasing functions $g : S \to \mathbb{R}$ if and only if $\Lambda : T \to \mathbb{R}$ is FSD-increasing.

Example: $\Lambda(t') \subseteq \Lambda(t)$ whenever t' > t.

FSD for comparative statics: the EU case

An agent chooses action $x \in X \subset \mathbb{R}$ under uncertainty to maximize

$$v(x,t) = \int_{S} u(x,s) d\lambda(s,t)$$

u is supermodular if u(x'', s) - u(x', s) is increasing in *s* for all x'' > x'.

Basic result 2: The function v is supermodular in (x, t) if (i) u(x, s) is supermodular and (ii) $\lambda(\cdot, t') \geq_{FSD} \lambda(\cdot, t)$ if t' > t.

Interpretation: the supermodularity of u guarantees that arg max_{$x \in X$} u(x, s) is increasing in s (Milgrom-Shannon Theorem).

If λ is FSD-increasing, then arg max_{$x \in X$} v(x, t) is increasing in t.

Changing stochastic environments

Proof:
$$\Delta(t) := v(x'', t) - v(x', t) = \int [u(x'', s) - u(x', s)] d\lambda(s, t).$$

If x'' > x', then $\delta(s) = u(x'', s) - u(x', s)$ is increasing in s.

So Δ is increasing in *t* if λ is FSD-increasing.

Changing stochastic environments

Proof:
$$\Delta(t) := v(x'', t) - v(x', t) = \int [u(x'', s) - u(x', s)] d\lambda(s, t).$$

If $x'' > x'$, then $\delta(s) = u(x'', s) - u(x', s)$ is increasing in s .
So Δ is increasing in t if λ is FSD-increasing. QED

Example: An agent lives for two periods. Income today is w_1 and tomorrow's income s is stochastic.

The expected utility of saving $x \in [0, w_1]$ is

$$v(x,t) = \int_{\mathcal{S}} \left[u_1(w_1 - x) + \beta u_2(Rx + s) \right] d\lambda(s,t).$$

If u_2 is concave, $(x, s) \rightarrow u_1(w_1 - x) + \beta u_2(Rx + s)$ is submodular. Assuming this, if λ is FSD-increasing, then v is submodular and hence $\arg \max_{x \in [0, w_1]} v(x, t)$ decreases with t.

FSD for comparative statics: the MEU case

If the agent is ambiguity averse, his objective function is

$$v(x,t) = \min\left\{\int_{S} u(x,s)d\lambda(s) : \lambda \in \Lambda(t)\right\}.$$

What set-generalization of an FSD shift will guarantee the supermodularity of v?

The property on Λ needed for comparative statics is different from the one needed to compare utilities.

FSD for comparative statics: the MEU case

A possible condition: $\Lambda(t')$ dominates $\Lambda(t)$ if every distribution in $\Lambda(t')$ dominates every distribution $\Lambda(t)$.

FSD for comparative statics: the MEU case

A possible condition: $\Lambda(t')$ dominates $\Lambda(t)$ if every distribution in $\Lambda(t')$ dominates every distribution $\Lambda(t)$.

Choose x' > x and suppose $v(x,t) = \int u(x,s)d\hat{\lambda}(s)$ for some $\hat{\lambda} \in \Lambda(t)$ and $v(x',t') = \int u(x',s)d\tilde{\lambda}(s)$ for some $\tilde{\lambda} \in \Lambda(t')$. Note that $v(x,t') \leq \int u(x',s)d\tilde{\lambda}(s)$ and $v(x',t) \leq \int u(x,s)d\hat{\lambda}(s)$. Since $\tilde{\lambda} \gtrsim_{FSD} \hat{\lambda}$ and x' > x, we obtain

$$\begin{aligned} v(x',t') - v(x,t') & \ge \int \left[u(x',s) - u(x,s) \right] d\tilde{\lambda}(s) \\ & \ge \int \left[u(x',s) - u(x,s) \right] d\hat{\lambda}(s) \\ & \ge v(x',t) - v(x,t). \end{aligned}$$

What assumption on $\Lambda : \mathcal{T} \to \mathcal{F}$ will guarantee the supermodularity of

$$v(x,t) = \min\left\{\int_{S} u(x,s)d\lambda(s) : \lambda \in \Lambda(t)\right\}?$$

Definition: $\Lambda : T \to \mathbb{R}$ is strongly FSD-increasing if, for $t' \ge t$, $\lambda' \in \Lambda(t')$, and $\lambda \in \Lambda(t)$, there is some $\mu' \in \Lambda(t')$ and $\mu \in \Lambda(t)$ such that

$$\lambda' \geq_{FSD} \mu, \ \mu' \geq_{FSD} \lambda, \ \text{and} \ \frac{1}{2}\lambda' + \frac{1}{2}\lambda = \frac{1}{2}\mu' + \frac{1}{2}\mu.$$

What assumption on $\Lambda:\,\mathcal{T}\to\mathcal{F}$ will guarantee the supermodularity of

$$v(x,t) = \min\left\{\int_{S} u(x,s)d\lambda(s) : \lambda \in \Lambda(t)\right\}?$$

Definition: $\Lambda : T \to \mathbb{R}$ is strongly FSD-increasing if, for $t' \ge t$, $\lambda' \in \Lambda(t')$, and $\lambda \in \Lambda(t)$, there is some $\mu' \in \Lambda(t')$ and $\mu \in \Lambda(t)$ such that

$$\lambda' \geq_{FSD} \mu, \ \mu' \geq_{FSD} \lambda, \ \text{and} \ \frac{1}{2}\lambda' + \frac{1}{2}\lambda = \frac{1}{2}\mu' + \frac{1}{2}\mu.$$

Let $S = \{s_i\}_{i=1}^{\ell+1}$ such that $s_1 < \ldots < s_{\ell+1}$.

Then λ can be thought of as the vector $(\lambda(s_1), \lambda(s_2), \dots, \lambda(s_\ell)) \in \mathbb{R}^{\ell}$.

Then $\Lambda : T \to \mathbb{R}$ is strongly FSD-increasing if and only if $-\Lambda$ satisfies the parallelogram property.

Theorem: Let X and T be subsets of \mathbb{R} . The function $v : X \times T \to \mathbb{R}$ given by

$$v(x,t) = \min\left\{\int_{S} u(x,s)d\lambda(s) : \lambda \in \Lambda(t)\right\},\$$

is supermodular in (x, t) for all functions u which are supermodular in (x, s) if and only if Λ is strongly FSD-increasing.

Theorem: Let X and T be subsets of \mathbb{R} . The function $v : X \times T \to \mathbb{R}$ given by

$$v(x,t) = \min\left\{\int_{S} u(x,s)d\lambda(s) : \lambda \in \Lambda(t)\right\},\$$

is supermodular in (x, t) for all functions u which are supermodular in (x, s) if and only if Λ is strongly FSD-increasing.

Note: If v is supermodular, then $\arg \max_{x \in X} v(x, t)$ is increasing in t.

Proof of sufficiency. For any distribution λ on $S = \{s_1, s_2, \dots, s_{\ell+1}\}$,

$$\int u(x,s)d\lambda(s) = u(x,s_{\ell+1}) + \sum_{i=1}^{\ell} \left[u(x,s_{i+1}) - u(x,s_i) \right] \left[-\lambda(s_i) \right].$$

Therefore, v(x, t) equals $u(x, s_{\ell+1}) + \min \left\{ \sum_{i=1}^{\ell} \left[u(x, s_{i+1}) - u(x, s_i) \right] \left[-\lambda(s_i) \right] : \lambda \in \Lambda(t) \right\}$ and v is supermodular iff $f(x, t) = \min \left\{ \sum_{i=1}^{\ell} p_i \left[-\lambda(s_i) \right] : \lambda \in \Lambda(t) \right\}$ is supermodular, where $p_i = u(x, s_{i+1}) - u(x, s_i)$.

Therefore, v(x, t) equals $u(x, s_{\ell+1}) + \min \left\{ \sum_{i=1}^{\ell} \left[u(x, s_{i+1}) - u(x, s_i) \right] \left[-\lambda(s_i) \right] : \lambda \in \Lambda(t) \right\}$ and v is supermodular iff $f(x, t) = \min \left\{ \sum_{i=1}^{\ell} p_i \left[-\lambda(s_i) \right] : \lambda \in \Lambda(t) \right\}$ is supermodular, where $p_i = u(x, s_{i+1}) - u(x, s_i)$. If x' > x, then since u is supermodular, $p'_i = u(x', s_{i+1}) - u(x', s_i) \ge p_i = u(x, s_{i+1}) - u(x, s_i)$ for $i = 1, 2, \dots, \ell$.

Therefore, v(x, t) equals $u(x, s_{\ell+1}) + \min \left\{ \sum_{i=1}^{\ell} \left[u(x, s_{i+1}) - u(x, s_i) \right] \left[-\lambda(s_i) \right] : \lambda \in \Lambda(t) \right\}$ and v is supermodular iff $f(x, t) = \min \left\{ \sum_{i=1}^{\ell} p_i \left[-\lambda(s_i) \right] : \lambda \in \Lambda(t) \right\}$ is supermodular, where $p_i = u(x, s_{i+1}) - u(x, s_i)$. If x' > x, then since u is supermodular, $p'_i = u(x', s_{i+1}) - u(x', s_i) \ge p_i = u(x, s_{i+1}) - u(x, s_i)$ for $i = 1, 2, \dots, \ell$. Thus, f(x', t) - f(x, t) = $\min\left\{\sum_{i=1}^{\ell} p_i' \left[-\lambda(s_i)\right] : \lambda \in \Lambda(t)\right\} - \min\left\{\sum_{i=1}^{\ell} p_i \left[-\lambda(s_i)\right] : \lambda \in \Lambda(t)\right\}$

By Main Theorem, f(x', t) - f(x, t) is increasing in t if $-\Lambda$ satisfies the parallelogram property. QED

Example (precautionary savings)

A consumer lives for two periods.

Income today is w_1 and tomorrow's income s is stochastic.

The utility of saving $x \in [0, w_1]$ is

$$v(x,t) = \min\left\{\int_{S} \left[u_1(w_1-x) + \beta u_2(Rx+s)\right] d\lambda(s) : \lambda \in \Lambda(t)\right\}.$$

If u_2 is concave, then $(x,s) \rightarrow \mathit{u}_1(\mathit{w}_1-x) + \beta \mathit{u}_2(\mathit{R} x + s)$ is submodular .

Assuming this, if Λ is strongly FSD-increasing in t, then v(x, t) is submodular and hence, $\arg \max_{x \in [0, w_1]} v(x, t)$ is decreasing in t, i.e.,

if high income is more likely tomorrow, the agent saves less today.

Examples of strongly FSD-increasing correspondences.

Example 1: Λ is strongly FSD-increasing if it is increasing in the strong set order, i.e.,

```
for any \lambda \in \Lambda(t) and \lambda' \in \Lambda(t'),
```

 $\lambda \lor \lambda' \in \Lambda(t')$ and $\lambda \land \lambda' \in \Lambda(t)$.

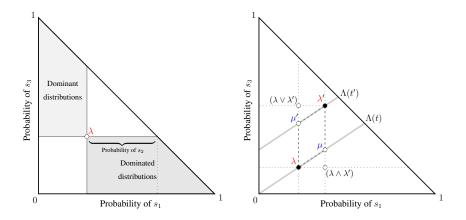
Specific instance:

$$\Lambda(t) = [\underline{\theta}(t), \overline{\theta}(t)]$$

where $\bar{\theta}(t) \geq_{FSD} \underline{\theta}(t)$ and both $\bar{\theta}$ and $\underline{\theta}$ are FSD-increasing.

Example 2: $\Lambda(t) = \text{All distributions on } S$ with mean t.

Illustration when $s_1 < s_2 < s_3$.



Extension to α -maxmin preferences

In fact, applying the Main Theorem we could also show that

$$w(x,t) = \max\left\{\int_{S} u(x,s)d\lambda(s) : \lambda \in \Lambda(t)\right\}$$

is a supermodular function when Λ is strongly FSD-increasing, just as

$$v(x,t) = \min\left\{\int_{S} u(x,s)d\lambda(s) : \lambda \in \Lambda(t)\right\}$$

is a supermodular function when Λ is strongly FSD-increasing. Therefore, for any $\alpha \in [0, 1]$, the function

$$h(x,t) = \alpha v(x,t) + (1-\alpha)w(x,t)$$

is also supermodular. Hence, $\operatorname{argmax}_{x \in X} h(x, t)$ increases with t.

Application 4: Variational Preferences

The agent's utility from choosing $x \in \mathbb{R}$ is

$$v(x,t) = \min\left\{\int_{S} u(x,s)d\lambda(s) + c(\lambda,t) : \lambda \in \triangle_{S}\right\}$$

Application 4: Variational Preferences

The agent's utility from choosing $x \in \mathbb{R}$ is

$$v(x,t) = \min\left\{\int_{S} u(x,s)d\lambda(s) + c(\lambda,t) : \lambda \in \triangle_{S}\right\}$$

Theorem: v(x, t) is supermodular in (x, t) if u(x, s) is supermodular and c satisfies the following condition (*):

for any $t' \ge t$ and distributions λ' and λ , there is μ' and μ such that

$$\begin{split} \lambda' \geq_{FSD} \mu, \ \mu' \geq_{FSD} \lambda, \ \frac{1}{2}\lambda' + \frac{1}{2}\lambda &= \frac{1}{2}\mu' + \frac{1}{2}\mu \ \text{and} \\ c(\lambda, t) + c(\lambda', t') \geqslant c(\mu, t) + c(\mu', t'). \end{split}$$

Application 4: Variational Preferences

The agent's utility from choosing $x \in \mathbb{R}$ is

$$v(x,t) = \min\left\{\int_{S} u(x,s)d\lambda(s) + c(\lambda,t) : \lambda \in \triangle_{S}\right\}$$

Theorem: v(x, t) is supermodular in (x, t) if u(x, s) is supermodular and c satisfies the following condition (*):

for any $t' \ge t$ and distributions λ' and λ , there is μ' and μ such that

$$\begin{split} \lambda' \geq_{FSD} \mu, \ \mu' \geq_{FSD} \lambda, \ \frac{1}{2}\lambda' + \frac{1}{2}\lambda &= \frac{1}{2}\mu' + \frac{1}{2}\mu \text{ and} \\ c(\lambda, t) + c(\lambda', t') \geqslant c(\mu, t) + c(\mu', t'). \end{split}$$

It suffices for c to be submodular in λ (for any fixed t): $c(\lambda, t) + c(\lambda', t) \leq c(\lambda \wedge \lambda', t) + c(\lambda \lor \lambda', t)$

and have increasing differences:

if $\lambda' \geq_{FSD} \lambda$, then $c(\lambda', t) - c(\lambda, t)$ increases with t.

Application 5: Multiplier preferences

This is the special case of variational preferences where

 $c(\lambda, t) := \theta R(\lambda \| \lambda^*(\cdot, t)),$

for some $\lambda^*(\cdot, t) \in \triangle_S$, where *R* is the relative entropy, i.e.,

$$R(\lambda \| \lambda^*(\cdot, t)) := \sum_{s \in S} \pi_s \ln\left(\frac{\pi_s}{\pi^*_s(t)}\right)$$

Note: π_s is the probability of state *s* in the distribution λ .

 $\lambda^*(\cdot, t)$ is the reference or benchmark distribution. $R(\lambda \| \lambda^*(\cdot, t)) = 0$ if $\lambda = \lambda^*$ and is positive otherwise.

[Sargent and Hansen (2001), Strzalecki (2011)]

Application 5: Multiplier preferences

Proposition: For any fixed $\lambda^*(\cdot, t)$, the relative entropy

$$R(\lambda \| \lambda^*(\cdot, t)) := \sum_{s \in S} \pi_s \ln\left(\frac{\pi_s}{\pi^*_s(t)}\right)$$

is a submodular function of $\lambda \in \Delta_S$.

Furthermore, R has increasing differences if $\lambda^*(\cdot, t)$ is increasing in t with respect to the monotone likelihood ratio order, i.e.,

if t'' > t', then the ratio $\pi_s^*(t'')/\pi_s^*(t')$ is increasing with s.

Application 5: Multiplier preferences

Proposition: For any fixed $\lambda^*(\cdot, t)$, the relative entropy

$$R(\lambda \| \lambda^*(\cdot, t)) := \sum_{s \in S} \pi_s \ln\left(\frac{\pi_s}{\pi^*_s(t)}\right)$$

is a submodular function of $\lambda \in \Delta_S$.

Furthermore, R has increasing differences if $\lambda^*(\cdot, t)$ is increasing in t with respect to the monotone likelihood ratio order, i.e.,

if t'' > t', then the ratio $\pi_s^*(t'')/\pi_s^*(t')$ is increasing with s.

Recap: $v(x,t) = \min \left\{ \int_{S} u(x,s) d\lambda(s) + \theta R(\lambda \| \lambda^{*}(t)) : \lambda \in \triangle_{S} \right\}$ is supermodular in (x,t) if

(1) u is supermodular in (x, s) and

(2) λ^* is increasing in t with respect to the monotone likelihood ratio.

The firm's profit in period t is $\pi(x_t, s_t)$, where x_t is the capital stock at the beginning of the period and s_t is the state of the world in period t.

At each period t, a firm decides on the next period's capital stock. The dividend at time t, net of investment is

$$r(x_t, x_{t+1}, s_t) = \pi(x_t, s_t) - c(x_{t+1} - \rho x_t)$$

where c is the cost of investment and ρ is the depreciation rate.

The firm's profit in period t is $\pi(x_t, s_t)$, where x_t is the capital stock at the beginning of the period and s_t is the state of the world in period t.

At each period t, a firm decides on the next period's capital stock. The dividend at time t, net of investment is

$$r(x_t, x_{t+1}, s_t) = \pi(x_t, s_t) - c(x_{t+1} - \rho x_t)$$

where c is the cost of investment and ρ is the depreciation rate.

If we assume that π is supermodular and c is convex, then r is supermodular, over all three arguments.

The firm's profit in period t is $\pi(x_t, s_t)$, where x_t is the capital stock at the beginning of the period and s_t is the state of the world in period t.

At each period t, a firm decides on the next period's capital stock. The dividend at time t, net of investment is

$$r(x_t, x_{t+1}, s_t) = \pi(x_t, s_t) - c(x_{t+1} - \rho x_t)$$

where c is the cost of investment and ρ is the depreciation rate.

If we assume that π is supermodular and c is convex, then r is supermodular, over all three arguments.

At the point when x_{t+1} is decided, the firm knows s_t but not s_{t+1} .

 $\Lambda(s_t)$ gives the set of distributions on S, conditional on s_t . Assume that Λ is strongly FSD-increasing.

With appropriate ancillary assumptions, the firm's decision at time t is governed by the Bellman equation

$$w(x,s) = \max_{y \in \mathbb{R}_+} \left[r(x,y,s) + \min\left\{ \int_S w(y,s') d\lambda(s') : \lambda \in \Lambda(s) \right\} \right],$$

where w(x, s) is the firm's value at (x, s).

Claim: w is a supermodular function.

With appropriate ancillary assumptions, the firm's decision at time t is governed by the Bellman equation

$$w(x,s) = \max_{y \in \mathbb{R}_+} \left[r(x,y,s) + \min\left\{ \int_S w(y,s') d\lambda(s') : \lambda \in \Lambda(s) \right\} \right],$$

where w(x, s) is the firm's value at (x, s).

Claim: w is a supermodular function.

Proof: For any supermodular function g(y, s'), we know from our theorem that

$$\min\left\{\int_{S} g(y,s') d\lambda(s') : \lambda \in \Lambda(s)\right\}$$

is a supermodular function in (y, s). Consequently

$$r(x, y, s) + \min\left\{\int_{S} g(y, s') d\lambda(s') : \lambda \in \Lambda(s)\right\}$$

is supermodular in (x, y, s).

With appropriate ancillary assumptions, the firm's decision at time t is governed by the Bellman equation

$$w(x,s) = \max_{y \in \mathbb{R}_+} \left[r(x,y,s) + \min\left\{ \int_S w(y,s') d\lambda(s') : \lambda \in \Lambda(s) \right\} \right],$$

where w(x, s) is the firm's value at (x, s).

Claim: w is a supermodular function.

With appropriate ancillary assumptions, the firm's decision at time t is governed by the Bellman equation

$$w(x,s) = \max_{y \in \mathbb{R}_+} \left[r(x,y,s) + \min\left\{ \int_S w(y,s') d\lambda(s') : \lambda \in \Lambda(s) \right\} \right],$$

where w(x, s) is the firm's value at (x, s).

Claim: w is a supermodular function.

Proof: For any supermodular function g(y, s'), we know from our theorem that

$$\min\left\{\int_{S} g(y,s') d\lambda(s') : \lambda \in \Lambda(s)\right\}$$

is a supermodular function in (y, s). Consequently

$$r(x, y, s) + \min\left\{\int_{S} g(y, s') d\lambda(s') : \lambda \in \Lambda(s)\right\}$$

is supermodular in (x, y, s).

Proof: For any supermodular function g(y, s'), we know from our theorem that

$$\min\left\{\int_{S} g(y,s') d\lambda(s') : \lambda \in \Lambda(s)\right\}$$

is a supermodular function in (y, s). Consequently

$$r(x, y, s) + \min\left\{\int_{S} g(y, s') d\lambda(s') : \lambda \in \Lambda(s)\right\}$$

is supermodular in (x, y, s). It follows that

$$(Tg)(x,s) = \max_{y \in \mathbb{R}_+} \left[r(x,y,s) + \min\left\{ \int_S g(y,s') d\lambda(s') : \lambda \in \Lambda(s) \right\} \right]$$

is a supermodular function of (x, s). The map T takes one supermodular function to another. T has a fixed point w, where w(x, s) is the firm's value at (x, s).

w is supermodular in (x, s). QED

The firm's decision at time t is governed by the Bellman equation

$$w(x,s) = \max_{y \in \mathbb{R}_+} \left[r(x,y,s) + \delta \min\left\{ \int_S w(y,s') d\lambda(s') : \lambda \in \Lambda(s) \right\} \right],$$

where w(x, s) is the firm's value at (x, s).

The supermodularity of the objective function implies that the optimal y is increasing in (x, s).

In other words, the firm's choice of capital stock x_{t+1} is increasing in (x_t, s_t) .

Conclusion

We develop a basic result on monotone comparative statics for linear objective functions.

We use it to establish a threefold equivalence:

- (1) monotone marginal costs
- (2) normal demand
- (3) the parallelogram property

We develop a notion of multi-prior first order stochastic dominance that is necessary and sufficient for monotone comparative statics.

Notes

Notes

Notes