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Lattices and Supermodularity

Definition: A partially ordered set pX ,¥X q is a lattice if every two
elements has a least upper bound (supremum) and a greatest lower
bound (infimum).

We denote the supremum of x and y by x _ y and their infimum by x ^ y .

Example 1: pR`,¥q is a lattice, where ¥ is the product order, i.e. x ¥ y
if xi ¥ yi for i � 1, 2, .., `. Indeed,

x _ y � pmaxtx1, y1u,maxtx2, y2u, ...,maxtx`, y`uq
x ^ y � pmintx1, y1u,mintx2, y2u, ...,mintx`, y`uq.

Example 2: Distributions on S � R is a lattice when ordered by first
order stochastic dominance.

pλ_ λ1qpsq � mintλpsq, λ1psqu
pλ^ λ1qpsq � maxtλpsq, λ1psqu
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Lattices and Supermodularity

Let pX ,¥X q be a lattice.

A function f : pX ,¥X q Ñ R is a supermodular function if, for any x , x 1

in X ,
f px ^ x 1q � f px _ x 1q ¥ f pxq � f px 1q.

For f : pR`
�,¥q Ñ R, supermodularity is equivalent to the following:

for any i P t1, 2, ..., `u, with x2i ¡ x 1i ,

f px2i , x�i q � f px 1i , x�i q is increasing in x�i .

If f is a production function, this says that the marginal productivity of
factor i increases as the input of other factors, x�i is raised.

If f is differentiable, the supermodularity of f is equivalent to

B2f
BxiBxj pxq ¥ 0 for all x , and i � j .
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Background and Motivation
Let A and B be two nonempty subsets in lattice pX ,¥X q.
B dominates A in the strong set order if for any x P A and x 1 P B,

x _ x 1 P B and x ^ x 1 P A.

We denote this by B © A.

𝑥 𝜖 𝐴

𝑥′𝜖 𝐵𝑥 ⋀ 𝑥′ 𝜖 𝐴

𝑥 ⋁ 𝑥′𝜖 𝐵

This implies that B is higher than A in the following sense:

for any x P A, there is x̂ P B such that x̂ ¥ x (choose x̂ � x _ x 1) and

for any x 1 P B there is x̃ P A such that x 1 ¥ x̃ P B (choose x̃ � x ^ x 1).
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Background and Motivation

Basic MCS Theorem.

Suppose η : X Ñ R is a supermodular function and B © A. Then

argmaxxPB ηpxq © argmaxxPA ηpxq.

Example. A firm maximizes profit ηpxq � F pxq � p � x ,

where x P R`
� is the vector of inputs and p P R`

�� are the factor prices.

Let A � tx P R`
� : x1 ¤ Mu and B � R`

�. Then B © A.

If F is supermodular, then so is η is supermodular.

Theorem says that more of all factors will be employed if the constraint
on increasing factor 1 is removed.
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Background and Motivation

Application of this result is limited because constraint sets are often not
ranked according to the strong set order.

Example. At price p P R`
�� and income w ¡ 0, a consumer’s budget set

is Bpp,wq � tx P R`
� : p � x ¤ wu.

Suppose w2 ¡ w 1: it is not the case that Bpp,w2q © Bpp,w 1q.
Indeed, if x 1 P Bpp,w 1q and x2 P Bpp,w2q, it is possible that
p � px 1 _ x2q ¡ w2 and hence x 1 _ x2 R Bpp,w2q.

Quah (2007, Ecta) deals with this issue: obtains comparative statics by
weakening the notion of set comparisons and strengthening the
requirements on the objective function η.

This approach leads to a sufficient, but not necessary, condition for
normal demand.

This paper provides a characterization of normal demand.
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Background and Motivation

We strengthen the condition on the objective function η even more.

We assume η is a linear function.

Question: what condition linking A and B guarantees that

argmaxxPB ηpxq is higher than argmaxxPA ηpxq (in some natural sense)?

Example. Let F : R`
� Ñ R� be production function.

Let B � tx P R`
� : F pxq ¥ q2u and A � tx P R`

� : F pxq ¥ q1u, where
q2 ¡ q1.

Then argminxPB p � x and argminxPA p � x is the conditional factor demand
at output q2 and q1 respectively, where p P R`

�� are the factor prices.

What restriction on F guarantee that factor demand is normal, i.e.,
increases with output (in some sense)?
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Parallelogram Property

Let the set of parameters be a poset pT ,¥q.

Definition. The correspondence Γ : T Ñ R` is increasing in the strong
set order if for any t 1 ¥ t, x P Γptq, x 1 P Γpt 1q, we have x _ x 1 P Γpt 1q and
x ^ x 1 P Γptq.

Definition. Γ : T Ñ R` satisfies the parallelogram property if for any
t 1 ¥ t and x P Γptq, x 1 P Γpt 1q, there is y P Γptq, y 1 P Γpt 1q such that

x 1 ¥ y , y 1 ¥ x and x � x 1 � y � y 1.

Note: If Γ : T Ñ R` is increasing in the strong set order then Γ has the
parallelogram property. Choose y � x ^ x 1 and y 1 � x _ x 1.

Definition. The correspondence Γ : T Ñ R` satisfies increasing property
if for any t 1 ¥ t and x P Γptq, x 1 P Γpt 1q, there is y P Γptq, y 1 P Γpt 1q such
that x 1 ¥ y and y 1 ¥ x .
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Parallelogram Property
Definition. Let correspondence Γ : T Ñ R` satisfies parallelogram
property if for any t 1 ¥ t and x P Γptq, x 1 P Γpt 1q, there is y P Γptq,
y 1 P Γpt 1q such that x 1 ¥ y , y 1 ¥ x and

x � x 1 � y � y 1.

B

A

bx
′

b
x

bc
y

bc y
′

x1

x2

B

A

bx
′

b
x

bc
y

bc y
′

x1

x2

1

Parallelogram property satisfied on the left but not the right.
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Our Basic Result

Main Theorem. Let T be a poset and Γ : T Ñ R` be a convex-valued
correspondence. The following statements are equivalent.

1. The correspondence Γ satisfies parallelogram property.

2. For any p P R`, the correspondence Φ : T Ñ R`, given by

Φptq :� argmin
!
p � x : x P Γptq

)
,

satisfies the parallelogram property.

3. For any p P R`, the correspondence Φ satisfies the increasing property.

Furthermore, suppose Γ is upward comprehensive (so x P Γptq implies
x 1 P Γptq for any x 1 ¡ x). Then

1 is implied by 3’: for any p P R`
��, Φ satisfies the increasing property.
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Application 1: Normal factor demand

Let F : R`
� Ñ R� be an increasing and quasiconcave production function.

We say that F has the parallelogram property if Γ : R� Ñ R`
� given by

Γpqq � tx P R`
� : F pxq ¥ qu

has the parallelogram property.

Immediate application of our Main Theorem:

Γ satisfies parallelogram property if and only if conditional factor demand

Φpqq :� argmin
!
p � x : x P Γpqq

)
,

satisfies the parallelogram property at every p P R`
��.

In particular, Φ is increasing with respect to q.
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Our Main Result

Proof that if Γ satisfies parallelogram property then so does Φ, where

Φptq :� argmin
!
p � x : x P Γptq

)
.

Take any p P R`, t 1 ¥ t, x P Φptq, and x 1 P Φpt 1q.
Since x P Γptq, x 1 P Γpt 1q, the parallelogram property on Γ guarantees
that there is y P Γptq and y 1 P Γpt 1q such that x � x 1 � y � y 1 and
x 1 ¥ y , y 1 ¥ x .

Since y P Γptq and x P Φptq, it must be p � y ¥ p � x .

Similarly, p � y 1 ¥ p � x 1. Thus,

p � py � y 1q ¥ p � px � x 1q � p � py � y 1q,

which holds only if p � y � p � x and p � y 1 � p � x 1.
Therefore, y P Φptq and y 1 P Φpt 1q. QED
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Our Main Result

The value function f : R` � T Ñ R is given by

f pp, tq :� min
 
p � y : y P Γptq(,

Definition. The value function f has increasing differences in pp, tq if, for
any t 1 ¥ t,

f
�
p, t 1

�� f
�
p, t

�
is increasing in p.

In the production context, f pp, qq is the cost of producing q.

f has increasing differences means that marginal cost

f
�
p, q1

�� f
�
p, q

�
increasing with factor prices p.
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Our Main Result

Main Theorem. Let T be a poset and Γ : T Ñ R` be a convex-valued
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has increasing differences in pp, tq.
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Application 1: Normal Factor Demand and
Monotone Marginal Cost

Theorem. Let F : R`
� Ñ R� be an increasing and quasiconcave

production function. The following statements are equivalent.

1. F satisfies the parallelogram property.

2. For any p P R`
��, the factor demand correspondence Φ : R� Ñ R`,

given by

Φpqq :� argmin
!
p � y : F pyq ¥ q

)
, (1)

satisfies the parallelogram property.

3. For any p P R`
��, factor demand Φ satisfies the increasing property.

4. The cost function f pp, qq :� min
 
p � y : F pyq ¥ q

(
,

has increasing differences.
(In other words, marginal cost increases with p.)
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Application 2: Normal Marshallian Demand

Suppose the utility function u : R`
� Ñ R is increasing and concave.

We say u has the parallelogram property if Γ : RÑ R`
� given by

Γptq � tx P R`
� : upxq ¥ tu has the parallelogram property.

Hicksian Demand is Hptq :� argmin
!
p � x : upxq ¥ t

)
.

By the previous theorem, we obtain

Theorem. Hicksian Demand satisfies parallelogram property at every
p P R`

�� if and only if u satisfies the parallelogram property.

The Marshallian Demand correspondence is

Dpp,wq � argmaxtupxq : x P Bpp,wqu.
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Application 2: Normal Marshallian Demand

If utility function is continuous and locally nonsatiated, then

Dpp,wq � Hpp, vpp,wqq

where vpp,wq � upDpp,wqq is the indirect utility at pp,wq.
This identity allows us to translate results from Hicksian Demand to
Marshallian Demand.

Theorem. Let utility u : R`
� Ñ R be continuous, increasing and

quasiconcave. The following statements are equivalent.

1. u satisfies the parallelogram property.

2. For any price p P R`
��, the Marshallian demand correspondence

Dpp, �q : R� Ñ R`
� satisfies the parallelogram property.

3. There is a function d : R`
�� � R� Ñ R such that dpp,wq P Dpp,wq,

for all pp,wq, and dpp,w 1q ¥ dpp,wq, for all p and w 1 ¥ w .
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Functions satisfying parallelogram property
What functions F : R`

� Ñ R satisfy the parallelogram property?

1. F is homothetic/homogeneous of degree k ¡ 0.

2. F is supermodular and concave; for example,
F px1, x2q � ?

x1x2 � ln x2 � x1.

3. Suppose fk : R`k Ñ R satisfies the parallelogram property for each
k � 1, 2, . . . , n and let G be a supermodular and concave function. Then

F px1, x2, . . . , xnq � G pf1px1q, f2px2q, . . . , fnpxnqq

satisfies the parallelogram property.

4. Let g : R2
� Ñ R be concave and supermodular. Then

F px1, x2, x3, x4q � gpx4pgpx3, gpx2, x1qqqq

satisfies the parallelogram property. For example,

F px1, x2, x3q � ?
x1 �

b?
x2 �?

x3.
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First order stochastic dominance: the EU case

Let F be the collection of distributions on S � R

Let pT ,¥q be set of parameters and let λ : T Ñ F be a function.

Definition: λ is increasing in first order stochastic dominance if
λpt 1q ¤ λptq whenever t 1 ¡ t.

Basic Result 1: λ is FSD-increasing if and only if

»
S

gpsq dλps, t 1q ¥
»
S

gpsqdλps, tq

for all increasing functions g : S Ñ R and t 1 ¡ t.

Let Λ : T Ñ F be a convex-valued correspondence. How do we
guarantee that

min

"»
S

gpsqdλpsq : λ P Λpt 1q
*
¥ min

"»
S

gpsqdλpsq : λ P Λptq
*

for all increasing functions g : S Ñ R and t 1 ¡ t?
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First order stochastic dominance: the MEU case

Definition: Let Λ : T Ñ F be a correspondence.

Λ is FSD-increasing if, for all t 1 ¡ t, the following holds:

for all λ1 P Λpt 1q there is λ P Λptq such that λ1 ÁFSD λ.

Theorem: The function

G ptq � min

"»
S

gpsqdλpsq : λ P Λptq
*

is increasing in t for increasing functions g : S Ñ R if and only if
Λ : T Ñ R is FSD-increasing.

Example: Λpt 1q � Λptq whenever t 1 ¡ t.
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FSD for comparative statics: the EU case

An agent chooses action x P X � R under uncertainty to maximize

vpx , tq �
»
S

upx , sqdλps, tq

u is supermodular if upx2, sq � upx 1, sq is increasing in s for all x2 ¡ x 1.

Basic result 2: The function v is supermodular in px , tq if

(i) upx , sq is supermodular and

(ii) λp�, t 1q ©FSD λp�, tq if t 1 ¡ t.

Interpretation: the supermodularity of u guarantees that
arg maxxPX upx , sq is increasing in s (Milgrom-Shannon Theorem).

If λ is FSD-increasing, then arg maxxPX vpx , tq is increasing in t.
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Changing stochastic environments

Proof: ∆ptq :� vpx2, tq � vpx 1, tq � ³rupx2, sq � upx 1, sqsdλps, tq.
If x2 ¡ x 1, then δpsq � upx2, sq � upx 1, sq is increasing in s.

So ∆ is increasing in t if λ is FSD-increasing. QED

Example: An agent lives for two periods.
Income today is w1 and tomorrow’s income s is stochastic.

The expected utility of saving x P r0,w1s is

vpx , tq �
»
S

ru1pw1 � xq � βu2pRx � sqs dλps, tq.

If u2 is concave, px , sq Ñ u1pw1 � xq � βu2pRx � sq is submodular .

Assuming this, if λ is FSD-increasing, then v is submodular

and hence arg maxxPr0,w1s vpx , tq decreases with t.
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Changing stochastic environments

Proof: ∆ptq :� vpx2, tq � vpx 1, tq � ³rupx2, sq � upx 1, sqsdλps, tq.
If x2 ¡ x 1, then δpsq � upx2, sq � upx 1, sq is increasing in s.

So ∆ is increasing in t if λ is FSD-increasing. QED
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FSD for comparative statics: the MEU case

If the agent is ambiguity averse, his objective function is

vpx , tq � min

"»
S

upx , sqdλpsq : λ P Λptq
*
.

What set-generalization of an FSD shift will guarantee the
supermodularity of v?

The property on Λ needed for comparative statics is different from the
one needed to compare utilities.
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FSD for comparative statics: the MEU case

A possible condition: Λpt 1q dominates Λptq if every distribution in Λpt 1q
dominates every distribution Λptq.

Choose x 1 ¡ x and suppose

vpx , tq � ³
upx , sqd λ̂psq for some λ̂ P Λptq and

vpx 1, t 1q � ³
upx 1, sqd λ̃psq for some λ̃ P Λpt 1q.

Note that vpx , t 1q ¤ ³
upx 1, sqd λ̃psq and vpx 1, tq ¤ ³

upx , sqd λ̂psq.

Since λ̃ ÁFSD λ̂ and x 1 ¡ x , we obtain

vpx 1, t 1q � vpx , t 1q ¥
» �

upx 1, sq � upx , sq� d λ̃psq
¥

» �
upx 1, sq � upx , sq� d λ̂psq

¥ vpx 1, tq � vpx , tq.
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Application 3: maxmin expected utility

What assumption on Λ : T Ñ F will guarantee the supermodularity of

vpx , tq � min

"»
S

upx , sqdλpsq : λ P Λptq
*

?

Definition: Λ : T Ñ R is strongly FSD-increasing if, for t 1 ¥ t,
λ1 P Λpt 1q, and λ P Λptq, there is some µ1 P Λpt 1q and µ P Λptq such that

λ1 ©FSD µ, µ1 ©FSD λ, and 1
2λ

1 � 1
2λ � 1

2µ
1 � 1

2µ.

Let S � tsiu`�1
i�1 such that s1   . . .   s`�1.

Then λ can be thought of as the vector pλps1q, λps2q, . . . , λps`qq P R`.

Then Λ : T Ñ R is strongly FSD-increasing if and only if �Λ satisfies the
parallelogram property.
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Application 3: maxmin expected utility

Theorem: Let X and T be subsets of R. The function v : X � T Ñ R
given by

vpx , tq � min

"»
S

upx , sqdλpsq : λ P Λptq
*
,

is supermodular in px , tq for all functions u which are supermodular in
px , sq if and only if Λ is strongly FSD-increasing.

Note: If v is supermodular, then arg maxxPX vpx , tq is increasing in t.

Proof of sufficiency. For any distribution λ on S � ts1, s2, . . . , s`�1u,
»
upx , sqdλpsq � upx , s`�1q �

`̧

i�1

�
upx , si�1q � upx , si q

��� λpsi q
�
.
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Application 3: maxmin expected utility

Therefore, vpx , tq equals

upx , s`�1q � min
!°`

i�1

�
upx , si�1q � upx , si q

��� λpsi q
�

: λ P Λptq
)

and v is supermodular iff f px , tq � min
!°`

i�1 pi
�� λpsi q

�
: λ P Λptq

)

is supermodular, where pi � upx , si�1q � upx , si q.

If x 1 ¡ x , then since u is supermodular,

p1i � upx 1, si�1q � upx 1, si q ¥ pi � upx , si�1q � upx , si q for i � 1, 2, . . . , `.

Thus, f px 1, tq � f px , tq �
min

!°`
i�1 p

1
i

�� λpsi q
�

: λ P Λptq
)
� min

!°`
i�1 pi

�� λpsi q
�

: λ P Λptq
)

By Main Theorem, f px 1, tq � f px , tq is increasing in t if �Λ satisfies the
parallelogram property. QED
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Application 3: maxmin expected utility

Example (precautionary savings)

A consumer lives for two periods.

Income today is w1 and tomorrow’s income s is stochastic.

The utility of saving x P r0,w1s is

vpx , tq � min

"»
S

ru1pw1 � xq � βu2pRx � sqs dλpsq : λ P Λptq
*
.

If u2 is concave, then px , sq Ñ u1pw1 � xq � βu2pRx � sq is submodular .

Assuming this, if Λ is strongly FSD-increasing in t, then vpx , tq is
submodular and hence, arg maxxPr0,w1s vpx , tq is decreasing in t, i.e.,

if high income is more likely tomorrow, the agent saves less today.
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Application 3: maxmin expected utility

Examples of strongly FSD-increasing correspondences.

Example 1: Λ is strongly FSD-increasing if it is increasing in the strong
set order, i.e.,

for any λ P Λptq and λ1 P Λpt 1q,

λ_ λ1 P Λpt 1q and λ^ λ1 P Λptq.

Specific instance:

Λptq � rθptq, θ̄ptqs
where θ̄ptq ©FSD θptq and both θ̄ and θ are FSD-increasing.
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Application 3: maxmin expected utility

Example 2: Λptq � All distributions on S with mean t.

Illustration when s1   s2   s3.

Dominated

distributions

Dominant

distributions

︸ ︷︷ ︸
Probability of s2

bcλ

1

1

Pr
ob

ab
ili

ty
of

s 3

Probability of s1
0 1

1

Pr
ob

ab
ili

ty
of

s 3

Probability of s1
0

bλ

bλ′

bc
(λ ∧ λ′)

bc(λ ∨ λ′)

bcµ′

bcµ

Λ(t′)

Λ(t)

Figure 4: The points on the graphs denote probability measures corresponding to cumulative

distributions in △S , for S = {s1, s2, s3}. On the right, the thick straight lines represent values

Λ(t) and Λ(t′) from Example 9, for some function h : S → R.

since λ(sℓ+1) = 1. Therefore, function f in part (iii) can be reformulated as

f(x, t) = g(x, sℓ+1) + min
{
1 · a : a ∈ Γ(x, t)

}
,

where 1 is the unit vector and Γ is defined as in (ii) for the function g. Since Γ is

lower supermodular, by the Main Theorem function f is supermodular. The proof of

implication (iii) ⇒ (ii) ⇒ (i) is extensive, hence, we postpone it until Appendix B.

Remark 2. Implication (i) ⇒ (ii) ⇒ (iii) does not require for the values Λ to be compact

or convex. The additional assumptions are employed to prove the converse.

We prove the following remark formally in Appendix B.

Remark 3. Proposition 5 remains true if S is a compact interval of R and function g(x, ·)
is Riemann-Stieltjes integrable over S with respect to each λ ∈ Λ(t), for all x ∈ X and

t ∈ T . In particular, this holds if at least one of the following conditions is satisfied:

(a) function g(x, s) is continuous in s ∈ S; (b) g(x, s) is bounded on S and has only

finitely many discontinuities in s, and all distributions in Λ(t) are atomless; or (c) g(x, s)

is bounded on S and monotone, and all distributions in Λ(t) are atomless.

Condition (i) in Proposition 5 requires that for any t′ ≥ t and distribution λ′ ∈ Λ(t′)

there is some µ ∈ Λ(t) such that λ′ ⪰ µ. Therefore, the belief correspondence has

22

31 / 44



Extension to α-maxmin preferences

In fact, applying the Main Theorem we could also show that

wpx , tq � max

"»
S

upx , sqdλpsq : λ P Λptq
*

is a supermodular function when Λ is strongly FSD-increasing,

just as

vpx , tq � min

"»
S

upx , sqdλpsq : λ P Λptq
*

is a supermodular function when Λ is strongly FSD-increasing.

Therefore, for any α P r0, 1s, the function

hpx , tq � αvpx , tq � p1 � αqwpx , tq

is also supermodular. Hence, argmaxxPXhpx , tq increases with t.
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Application 4: Variational Preferences

The agent’s utility from choosing x P R is

vpx , tq � min

"»
S

upx , sqdλpsq � cpλ, tq : λ P 4S

*

Theorem: vpx , tq is supermodular in px , tq if upx , sq is supermodular and
c satisfies the following condition (�):

for any t 1 ¥ t and distributions λ1 and λ, there is µ1 and µ such that

λ1 ©FSD µ, µ1 ©FSD λ, 1
2λ

1 � 1
2λ � 1

2µ
1 � 1

2µ and

cpλ, tq � cpλ1, t 1q ¥ cpµ, tq � cpµ1, t 1q.

It suffices for c to be submodular in λ (for any fixed t):
cpλ, tq � cpλ1, tq ¤ cpλ^ λ1, tq � cpλ_ λ1, tq

and have increasing differences:
if λ1 ©FSD λ, then cpλ1, tq � cpλ, tq increases with t.
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Application 5: Multiplier preferences

This is the special case of variational preferences where

cpλ, tq :� θR
�
λ}λ�p�, tq�,

for some λ�p�, tq P 4S , where R is the relative entropy, i.e.,

Rpλ}λ�p�, tqq :�
¸
sPS

πs ln

�
πs

π�s ptq



Note: πs is the probability of state s in the distribution λ.

λ�p�, tq is the reference or benchmark distribution.

Rpλ}λ�p�, tqq � 0 if λ � λ� and is positive otherwise.

[Sargent and Hansen (2001), Strzalecki (2011)]
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Application 5: Multiplier preferences

Proposition: For any fixed λ�p�, tq, the relative entropy

Rpλ}λ�p�, tqq :�
¸
sPS

πs ln

�
πs

π�s ptq



is a submodular function of λ P ∆S .

Furthermore, R has increasing differences if λ�p�, tq is increasing in t
with respect to the monotone likelihood ratio order, i.e.,

if t2 ¡ t 1, then the ratio π�s pt2q{π�s pt 1q is increasing with s.

Recap: vpx , tq � min
 ³

S
upx , sqdλpsq � θRpλ}λ�ptqq : λ P 4S

(
is supermodular in px , tq if

(1) u is supermodular in px , sq and

(2) λ� is increasing in t with respect to the monotone likelihood ratio.
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Application 6: MEU dynamic optimization

The firm’s profit in period t is πpxt , stq, where xt is the capital stock at
the beginning of the period and st is the state of the world in period t.

At each period t, a firm decides on the next period’s capital stock. The
dividend at time t, net of investment is

rpxt , xt�1, stq � πpxt , stq � cpxt�1 � ρxtq

where c is the cost of investment and ρ is the depreciation rate.

If we assume that π is supermodular and c is convex, then r is
supermodular, over all three arguments.

At the point when xt�1 is decided, the firm knows st but not st�1.

Λpstq gives the set of distributions on S , conditional on st .
Assume that Λ is strongly FSD-increasing.
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Application 6: MEU dynamic optimization

With appropriate ancillary assumptions, the firm’s decision at time t is
governed by the Bellman equation

wpx , sq � max
yPR�

�
rpx , y , sq � min

"»
S

wpy , s 1qdλps 1q : λ P Λpsq
*�

,

where wpx , sq is the firm’s value at px , sq.
Claim: w is a supermodular function.

Proof: For any supermodular function gpy , s 1q, we know from our
theorem that

min

"»
S

gpy , s 1qdλps 1q : λ P Λpsq
*

is a supermodular function in py , sq. Consequently

rpx , y , sq � min

"»
S

gpy , s 1qdλps 1q : λ P Λpsq
*

is supermodular in px , y , sq.
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Application 6: MEU dynamic optimization

Proof: For any supermodular function gpy , s 1q, we know from our
theorem that

min

"»
S

gpy , s 1qdλps 1q : λ P Λpsq
*

is a supermodular function in py , sq. Consequently

rpx , y , sq � min

"»
S

gpy , s 1qdλps 1q : λ P Λpsq
*

is supermodular in px , y , sq. It follows that

pT gqpx , sq � max
yPR�

�
rpx , y , sq � min

"»
S

gpy , s 1qdλps 1q : λ P Λpsq
*�

is a supermodular function of px , sq. The map T takes one supermodular
function to another. T has a fixed point w , where wpx , sq is the firm’s
value at px , sq.
w is supermodular in px , sq. QED
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Application 6: MEU dynamic optimization

The firm’s decision at time t is governed by the Bellman equation

wpx , sq � max
yPR�

�
rpx , y , sq � δmin

"»
S

wpy , s 1qdλps 1q : λ P Λpsq
*�

,

where wpx , sq is the firm’s value at px , sq.

The supermodularity of the objective function implies that the optimal y
is increasing in px , sq.

In other words, the firm’s choice of capital stock xt�1 is increasing in
pxt , stq.
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Conclusion

We develop a basic result on monotone comparative statics

for linear objective functions.

We use it to establish a threefold equivalence:

(1) monotone marginal costs
(2) normal demand
(3) the parallelogram property

We develop a notion of multi-prior first order stochastic dominance

that is necessary and sufficient for monotone comparative statics.
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