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Introduction

We analyze choice behavior under risk and time in a budgetary
environment.

The experiment is similar to other experiments involving budgetary
choices, for example,

I risk preference (Choi, Fisman, Gale, and Kariv, 2007)

I ambiguity preference (Ahn et al., 2014)

I time preference (Andreoni and Sprenger, 2012)

I social preference (Andreoni and Miller, 2002; Fisman, Kariv, and
Markovits, 2007)

Surprisingly few experiments that involve both time and risk.

Methodological contribution: we use

new revealed preference techniques.
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The experiment
There are two states which occur with equal probability.

Outcome at each state is a consumption stream, with a payout at
date 1 (one week later) and another at date 2 (nine weeks later).

t1 t2
s1 x11 x12
s2 x21 x22

Subjects allocate 100 tokens across the four contingent commodities.
They choose x = ((x11, x12), (x21, x22)) to satisfy budget

p11x11 + p12x12 + p21x21 + p22x22 = 100.

For example, if p11 = 1, p12 = 1, p21 = 2, and p22 = 1 then
the bundle x = (50, 0, 10, 30) is feasible since

1(50) + 1(0) + 2(10) + 1(30) = 100.

If state 2 is realized, the subject receives 10(0.2) =SGD2 at date 1
and 30(0.2) =SGD6 at date 2.
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The experiment

I One of the four prices is always 1, the other three prices are
randomly chosen from {0.5, 0.8, 1.25, 2}.

I In addition to (1, 1, 1, 1), 40 budget sets are randomly chosen for
subjects in each session.

I Each subject is paid according to one decision task, chosen via
the Random Incentive Mechanism.

I Subjects were paid on average SGD 22 with post-dated cheques.

I A total of 103 undergraduate students from the National
University of Singapore.

I Most of our subjects completed the tasks within 40 minutes.



Discounted expected utility

t1 t2
s1 x11 x12
s2 x21 x22

How should subject evaluate different bundles x = (x11, x12, x21, x22)
on the budget line

p11x11 + p12x12 + p21x21 + p22x22 = 100 ?

The canonical model is discounted expected utility (DEU):

U(x11, x12, x21, x22) = 0.5 [u(x11) + δu(x12)] + 0.5 [u(x21) + δu(x22)] .

We analyze the data to answer the following questions:

I is the subject is maximizing some utility function

U(x11, x12, x21, x22)?

I what properties does that utility function satisfy?
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Revealed Preference Analysis

Let O = {(pt, xt)}t∈T be a set of observations drawn from a subject.

Each observation consists of

price vector pn = (pn1 , p
n
2 , . . . , p

n
` )� 0 and

consumption bundle xn = (xn1 , x
n
2 , . . . , x

n
` ) ≥ 0.

Definition. A utility function U : R`
+ → R is a strictly increasing and

continuous function. U rationalizes O = {(pn, xn)}n∈N if, at every
observation n ∈ N ,

U(xn) ≥ U(x) for all x ∈ {x ∈ R`
+ : pn · x ≤ pn · xn}.

Afriat’s Theorem (1967) answers the following question:

what conditions on O = {(pn, xn)}n∈N are necessary and sufficient
for it to be rationalizable by a utility function?
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GARP

Given O = {(pn, xn)}n∈N , let D = {xn}n∈N .

For any xn, xm ∈ D, we say xn is directly revealed preferred to xm if
pn · xm ≤ pn · xn. [Notation: xn � xm.]

If pn · xm < pn · xn, we say xn is directly revealed strictly preferred to
xm. [Notation: xm Ï xm.]

Motivation: For an agent maximizing a utility function U ,

xn � xm =⇒ U(xn) ≥ U(xm) and

xn Ï xn =⇒ U(xn) > U(xm).
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pn · xm ≤ pn · xn. [Notation: xn � xm.]

If pn · xm < pn · xn, we say xn is directly revealed strictly preferred to
xm. [Notation: xm Ï xm.]

Definition. A data set O = {(pn, xn)}n∈N obeys the Generalized
Axiom of Revealed Preference (GARP) if, for all sequences n1, . . . , nK

in {1, 2, . . . , N},

xn1 � xn2 � . . . � xnK =⇒ xnK 6Ï xn1 .

Afriat’s Theorem. O can be rationalized by a utility function if and
only if it obeys GARP.



GARP

Example of GARP violation:
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Violation of GARP: x1 Ï x2 and x2 Ï x1.



Critical Cost Efficiency Index

How do we measure the extent of the departure from rationality?

We use an approach suggested by Afriat (1972) and Varian (1990).

If no increasing utility function rationalizes O, we make the
requirement less stringent by shrinking all budget sets in O by a
factor e ∈ [0, 1).

Is there U such that U(xt) ≥ U(x) for all x ∈ Bt(e), where

Bt(e) = {x ∈ RS
+ : x ≤ xt} ∪ {x ∈ RS

+ : pt · x ≤ e pt · xt}.

The largest e at which a data set passes the test is known as the
critical cost efficiency index (CCEI).

e can be obtained via a modification of the GARP test.
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Basic Rationality

t1 t2
s1 x11 x12
s2 x21 x22

The data set in our case is

O = {[(pn11, pn12, pn21, pn22) ; (xn11, x
n
12, x

n
21, x

n
22)]}41n=1

We can check for utility-maximization by checking GARP.

Subjects are broadly consistent with utility-maximization.

Table: Pass Rates for Utility Maximization

ē ≥ 0.99 ē ≥ 0.95 ē ≥ 0.90
Experimental subjects 71.8 90.3 97.1

Uniform random datasets 0.0 0.0 0.0
Resampled datasets 24.3 38.6 65.7



SuperGARP

We implement tests of the rationalizability of O = {(pn, xn)}n∈N
with a utility function U : R`

+ → R that has added properties.

This is based on Nishimura, Ok, and Quah (2017).

The added property must take the form of agreement with a given
underlying preorder D on R`

+, i.e.,

U(x′) ≥ U(x) whenever x′ D x.

Some of the restrictions implied by DEU

U(x11, x12, x21, x22) = 0.5 [u(x11) + δu(x12)] + 0.5 [u(x21) + δu(x22)]

take the form of agreement with various preorders.



SuperGARP

A utility function U : R4
+ → R satisfies lottery equivalence (LE) if

U((a, b), (a′, b′)) = U((a′, b′), (a, b))

for all (a, b) and (a′, b′) in R2
+.

LE is obviously satisfied by DEU.

It also holds for any state-separable form

U((a, b), (a′, b′)) = G(f(a, b), f(a′, b′))

with a symmetric function G.

But state-separability is not essential. For example

U((a, b), (a′, b′)) = f(a, b) + h(a, b)h(a′, b′) + f(a′, b′)

satisfies LE.



SuperGARP

A utility function U : R4
+ → R satisfies lottery equivalence (LE) if

U((a, b), (a′, b′)) = U((a′, b′), (a, b))

for all (a, b) and (a′, b′) in R2
+.

LE can be re-stated as agreement with the LE preorder DLE:

((a, b), (a′, b′)) DLE ((a′, b′), (a, b))

for all (a, b) and (a′, b′) in R2
+.

Is O rationalizable by a utility function that satisfies LE;

i.e., by a utility function that extends D=DLE .



SuperGARP

Given data set O = {(pn, xn)}Nn=1,

bundle xn is revealed preferred to xm according to the preorder D
if there exists bundle x such that

pn · xn ≥ pn · x and x D xm (1)

When this occurs we write xn � xm.

Bundle xn is strictly revealed preferred to xm according to D

if it is possible to replace either D with . or ≥ with > in (1).
We denote this relation by xn Ï xm.

Example. pn = (1, 1, 2, 2), xn = (50, 50, 0, 0), and xm = (0, 0, 40, 40).

Then pn · xm = 160 > pn · xn = 100, so xn 6� xm.

However, xn ÏLE x
m since pn · xn > pn · (40, 40, 0, 0) and

(40, 40, 0, 0) DLE (0, 0, 40, 40).
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SuperGARP

Definition. A dataset O satisfies GARP according to D if, for all
sequences n1, . . . , nK in {1, 2, . . . , N},

xn1 � xn2 � . . . � xnK =⇒ xnK 6Ï xn1 .

Theorem. Suppose D is a well-behaved and closed preorder.

Then O is rationalizable by a utility function that
agrees with D if and only if it obeys GARP according to D.

We can also calculate Afriat’s efficiency index for this model, i.e., the
largest e such that there is a utility function U that agrees with D
and satisfies U(xt) ≥ U(x) for all x ∈ Bt(e),

Bt(e) = {x ∈ RS
+ : x ≤ xt} ∪ {x ∈ RS

+ : pt · x ≤ e pt · xt}.



Lottery Equivalence and Impatience

A utility function U : R4
+ → R satisfies lottery equivalence

if it agrees with DLE defined as follows:

((a, b), (a′, b′)) DLE ((a′, b′), (a, b))

for all (a, b) and (a′, b′) in R2
+.

The utility function U : R4
+ → R satisfies impatience if

U((a, b), (a′, b′)) ≥ U((b, a), (a′, b′)) whenever a ≥ b and
U((a, b), (a′, b′)) ≥ U((a, b), (b′, a′)) whenever a′ ≥ b′.

The preorder DI corresponding to impatience is

((a, b), (a′, b′)) DI ((b, a), (a′, b′)) whenever a ≥ b and
((a, b), (a′, b′)) DI ((a, b), (b′, a′)) whenever a′ ≥ b′.

Obviously, DEU satisfies impatience if δ < 1.
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Lottery Equivalence and Impatience

Obviously, DEU satisfies both lottery equivalence and impatience.

We can also test if O is rationalizable by a utility function that
satisfies impatience and lottery equivalence.

Equivalently, such a utility function agrees with

D= tran(DLE ∪ DI).

Table: Pass Rates for DEU properties

ē ≥ 0.99 ē ≥ 0.95 ē ≥ 0.90
Basic rationality 71.8 90.3 97.1
Lottery Equivalence (LE) 62.1 84.5 93.2
Impatience 65.1 84.5 92.2
LE and Impatience 55.3 79.6 91.3



Lottery Equivalence and Impatience

Obviously, DEU satisfies both lottery equivalence and impatience.

We can also test if O is rationalizable by a utility function that
satisfies impatience and lottery equivalence.

Equivalently, such a utility function agrees with

D= tran(DLE ∪ DI).

Table: Pass Rates for DEU properties

ē ≥ 0.99 ē ≥ 0.95 ē ≥ 0.90
Basic rationality 71.8 90.3 97.1
Lottery Equivalence (LE) 62.1 84.5 93.2
Impatience 65.1 84.5 92.2
LE and Impatience 55.3 79.6 91.3
Patience 50.5 66.0 73.8



Correlation Neutrality

A utility function U : R4
+ → R satisfies correlation neutrality if

U
(

(a, b), (a′, b′)
)

= U
(

(a′, b), (a, b′)
)

and

U
(

(a, b), (a′, b′)
)

= U
(

(a, b′), (a, b)
)

for all (a, b) and (a′, b′) in R2
+.

DEU satisfies correlation neutrality.

And so does any symmetric time-separable utility function:

U((a, b), (a′, b′)) = H(g(a, a′), g(b, b′))

where g is symmetric.
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Correlation Neutrality

A utility function U : R4
+ → R satisfies correlation neutrality if

U
(

(a, b), (a′, b′)
)

= U
(

(a′, b), (a, b′)
)

and

U
(

(a, b), (a′, b′)
)

= U
(

(a, b′), (a, b)
)

for all (a, b) and (a′, b′) in R2
+.

DEU satisfies correlation neutrality.

Table: Pass Rates for DEU properties

ē ≥ 0.99 ē ≥ 0.95 ē ≥ 0.90
Basic rationality 71.8 90.3 97.1
Lottery Equivalence (LE) 62.1 84.5 93.2
Impatience 65.1 84.5 92.2
LE and Impatience 55.3 79.6 91.3
Correlation Neutrality 14.6 22.3 56.3



Correlation Aversion

Let U : R4
+ → R be a utility function satisfying lottery equivalence. U

satisfies correlation aversion if for all payouts a ≥ a′ and b ≥ b′

U
(

(a′, b), (a, b′)
)
≥ U

(
(a, b), (a′, b′)

)
(2)

If the above inequality is reversed then U is correlation seeking.

In the Kihlstrom-Mirman form:

U(c) = φ
(
u(c1,1) + δu(c1,2)

)
+ φ

(
u(c2,1) + δu(c2,2)

)
lottery equivalence always holds and impatience holds if δ ∈ (0, 1).

Correlation aversion holds if φ is concave.
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If the above inequality is reversed then U is correlation seeking.

Table: Pass Rates: Correlation Aversion vs Correlation Seeking
(with LE+I)

ē ≥ 0.99 ē ≥ 0.95 ē ≥ 0.90
Correlation Aversion 51.5 75.7 89.3
Correlation Seeking 16.5 26.2 52.4
Correlation Neutrality 13.6 22.3 50.5
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Stochastic Impatience

A utility function U : R4
+ → R satisfies stochastic impatience

(DeJarnette, Dillenberger, Gottlieb, Ortoleva (2020)) if it satisfies
lottery equivalence and for all c ≤ b ≤ a,

U
(

(a, c), (c, b)
)
≥ U

(
(b, c), (c, a)

)
.

For example, U((10, 0), (0, 5)) ≥ U((5, 0), (0, 10)).

If the inequality is reversed, U obeys stochastic patience.

Stochastic impatience is a consequence of DEU, but not LE + I.

In the Kihlstrom-Mirman form:

U(c) = φ
(
u(c1,1) + δu(c1,2)

)
+ φ

(
u(c2,1) + δu(c2,2)

)
stochastic impatience holds if u is increasing, u(r) > 0 for all r > 0
and φ has coefficient of relative risk aversion less than 1.
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)
+ φ

(
u(c2,1) + δu(c2,2)

)
stochastic impatience holds if u is increasing, u(r) > 0 for all r > 0
and φ has coefficient of relative risk aversion less than 1.



Stochastic Impatience

A utility function U : R4
+ → R satisfies stochastic impatience

(DeJarnette, Dillenberger, Gottlieb, Ortoleva (2020)) if it satisfies
lottery equivalence and for all c ≤ b ≤ a,

U
(

(a, c), (c, b)
)
≥ U

(
(b, c), (c, a)

)
.

If the inequality is reversed, U obeys stochastic patience.

Table: Pass Rates for DEU properties

ē ≥ 0.99 ē ≥ 0.95 ē ≥ 0.90
Basic rationality 71.8 90.3 97.1
Lottery Equivalence (LE) 62.1 84.5 93.2
Impatience 65.1 84.5 92.2
LE and Impatience 55.3 79.6 91.3
Stochastic Impatience 53.4 79.6 91.3
Stochastic Patience 42.7 68.0 82.5



Takeaways

There is support for U that satisfies lottery equivalence and
impatience, and even stochastic impatience.

There is little support for correlation neutrality,

which is enough to guarantee that DEU performs poorly.

There is strong evidence of correlation aversion.



Ordinal Dominance

A utility function U : R4
+ → R satisfies ordinal dominance if U

satisfies lottery equivalence and

U
(

(a, b), (a, b)
)
≥ U

(
(a′, b′), (a′, b′)

)
=⇒

U
(

(a, b), (a′′, b′′)
)
≥ U

(
(a′, b′), (a′′, b′′)

)
for all a, a′, a′′, b, b′, b′′ ∈ R+.

Equivalent to U being state separable:

the existence of G and f such that

U
(

(a, b), (a′, b′)
)

= G (f(a, b), f(a′, b′))

We can choose f(a, b) = U((a, b), (a, b)), i.e., f(a, b) is the utility when
there is no risk.



Ordinal Dominance

Suppose an agent’s utility is

U
(

(x11, x12), (x21, x22)
)

= G (f(x11, x12), f(x21, x22)) .

Suppose x̂ = (x̂1, x̂2) maximizes U in the budget set

{(x1, x2) ∈ R4
+ : (p̂1, p̂2) · (x1, x2) ≤ (p̂1, p̂2) · (x̂1, x̂2)}.

(Notation: x̂1 = (x̂11, x̂12) ∈ R2
+, p̂1 = (p̂11, p̂12) ∈ R2

+, etc.)

Then x̂1 maximizes f(x1) in the set

{x1 = (x11, x12) ∈ R2
+ : p̂1 · x1 ≤ p̂1 · x̂1}.

In other words, if (x̂1, x̂2) maximizes overall utility, then x̂1 must
maximize the sub-utility in state 1, among consumption streams that
cost no more than x̂1.

Similarly, x̂2 maximizes state 2 sub-utility, among all consumption
streams in state 2 that cost no more than x̂2.



Ordinal Dominance

Let Osplit =
{

(x11, p
1
1), . . . , (xN1 , p

N
1 )

}
∪
{

(x12, p
1
2), . . . , (xN2 , p

N
2 )

}
A necessary (but not sufficient) condition for O to be rationalized by
U that satisfies impatience and weak separability is that

Osplit can be rationalized by some strictly increasing continuous
utility function f : R2

+ → R such that f(a, b) ≥ f(b, a) if a ≥ b.

Table: Ordinal Dominance Test using Osplit

ē ≥ 0.99 ē ≥ 0.95 ē ≥ 0.90
Impatient subutility 65.0 78.6 84.5

The paper goes on to estimate a parametric version of the
Kihlstrom-Mirman model for each subject:

U(c) = φ
(
u(c1,1) + δu(c1,2)

)
+ φ

(
u(c2,1) + δu(c2,2)

)
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1
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N
2 )

}
A necessary (but not sufficient) condition for O to be rationalized by
U that satisfies impatience and weak separability is that

Osplit can be rationalized by some strictly increasing continuous
utility function f : R2

+ → R such that f(a, b) ≥ f(b, a) if a ≥ b.

Table: Ordinal Dominance Test using Osplit

ē ≥ 0.99 ē ≥ 0.95 ē ≥ 0.90
Impatient subutility 65.0 78.6 84.5

The paper goes on to estimate a parametric version of the
Kihlstrom-Mirman model for each subject:

U(c) = φ
(
u(c1,1) + δu(c1,2)

)
+ φ

(
u(c2,1) + δu(c2,2)

)



Conclusion

New Super GARP revealed preference techniques allow us to test for
structural properties on utility functions.

Among the features of the DEU model, there is support for

lottery equivalence, impatience, correlation aversion,

stochastic impatience, and state-separability.

But not for correlation neutrality.


