Notation

The set

\[R^l = \{ x = (x_1, x_2, \ldots, x_l) : x_i \in R \} \]

is known as the Euclidean space. We denote

\[R^l_+ = \{ x \in R^l : x_i \geq 0 \ \forall \ i \} \]
\[R^l_{++} = \{ x \in R^l : x_i > 0 \ \forall \ i \} \]

We sometimes refer to \(R^l_+ \) as the positive orthant.

For vectors \(x \) and \(y \) in \(R^l \), we say

\(x \geq y \) if \(x_i \geq y_i \) for all \(i \) and
Notation

The set

\[R^l = \{ x = (x_1, x_2, \ldots, x_l) : x_i \in R \} \]

is known as the Euclidean space. We denote

\[R^l_+ = \{ x \in R^l : x_i \geq 0 \ \forall \ i \} \]
\[R^l_{++} = \{ x \in R^l : x_i > 0 \ \forall \ i \} \]

We sometimes refer to \(R^l_+ \) as the positive orthant.

For vectors \(x \) and \(y \) in \(R^l \), we say

\[x \geq y \text{ if } x_i \geq y_i \text{ for all } i \text{ and } x > y \text{ if } x_i \geq y_i \text{ for all } i \text{ and } x \neq y. \]
Notation

The set

$$R^l = \{x = (x_1, x_2, \ldots, x_l) : x_i \in R\}$$

is known as the Euclidean space. We denote

$$R^l_+ = \{x \in R^l : x_i \geq 0 \forall i\}$$

$$R^l_{++} = \{x \in R^l : x_i > 0 \forall i\}$$

We sometimes refer to R^l_+ as the positive orthant.

For vectors x and y in R^l, we say

$x \geq y$ if $x_i \geq y_i$ for all i and $x > y$ if $x_i \geq y_i$ for all i and $x \neq y$.

Finally, $x \gg y$ if $x_i > y_i$ for all i.
Notation

The set
\[R^l = \{ x = (x_1, x_2, \ldots, x_l) : x_i \in R \} \]
is known as the Euclidean space. We denote
\[R^l_+ = \{ x \in R^l : x_i \geq 0 \ \forall \ i \} \]
\[R^l_{++} = \{ x \in R^l : x_i > 0 \ \forall \ i \} \]
We sometimes refer to \(R^l_+ \) as the positive orthant.

For vectors \(x \) and \(y \) in \(R^l \), we say

\(x \geq y \) if \(x_i \geq y_i \) for all \(i \) and \(x > y \) if \(x_i \geq y_i \) for all \(i \) and \(x \neq y \).

Finally, \(x \gg y \) if \(x_i > y_i \) for all \(i \).

Examples: \((1, 3, 3) > (1, 2, 3)\) and \((1, 3, 3) \gg (0, 2, 1)\).
Demand Theory

Assume that there are l commodities and that the consumption space is R^l_+ (the positive orthant).

Agent has the utility function $U : R^l_+ \to \mathbb{R}$.
Demand Theory

Assume that there are l commodities and that the consumption space is R^l_+ (the positive orthant).

Agent has the utility function $U : R^l_+ \rightarrow R$.

Recall the following:

U is said to be increasing if $x' \gg x$ implies $U(x') > U(x)$.

U is strictly increasing if $x' > x$ implies $U(x') > U(x)$.
Demand Theory

Assume that there are \(l \) commodities and that the consumption space is \(R^l_+ \) (the positive orthant).

Agent has the utility function \(U : R^l_+ \to R \).

Recall the following:

\(U \) is said to be **increasing** if \(x' \gg x \) implies \(U(x') > U(x) \).

\(U \) is **strictly increasing** if \(x' > x \) implies \(U(x') > U(x) \).

\(U \) is **quasiconcave** if, for any \(\alpha \), the set \(\{ x \in R^l_+ : U(x) \geq \alpha \} \) is a convex set. Equivalently, whenever \(U(x') \geq \alpha \) and \(U(x) \geq \alpha \), then \(U(tx' + (1 - t)x) \geq \alpha \) for any \(t \in [0, 1] \).
Demand Theory

Assume that there are l commodities and that the consumption space is R^l_+ (the positive orthant).

Agent has the utility function $U : R^l_+ \to R$.

Recall the following:

U is said to be **increasing** if $x' \gg x$ implies $U(x') > U(x)$.

U is **strictly increasing** if $x' > x$ implies $U(x') > U(x)$.

U is **quasiconcave** if, for any α, the set $\{x \in R^l_+ : U(x) \geq \alpha\}$ is a convex set. Equivalently, whenever $U(x') \geq \alpha$ and $U(x) \geq \alpha$, then $U(tx' + (1-t)x) \geq \alpha$ for any $t \in [0, 1]$.

U is **strictly quasiconcave** if, whenever $U(x') \geq \alpha$ and $U(x) \geq \alpha$, then $U(tx' + (1-t)x) > \alpha$ for any $t \in (0, 1)$.
Demand Theory

At price (vector) \(p = (p_1, p_2, ..., p_l) \) in \(R^{l}_{++} \) (we also write \(p \gg 0 \)) and income \(w > 0 \), the agent’s budget set is

\[
B(p, w) = \{ x \in R^l_+ : p \cdot x \leq w \}.
\]
Demand Theory

At price (vector) \(p = (p_1, p_2, \ldots, p_l) \) in \(R_{++}^l \) (we also write \(p \gg 0 \)) and income \(w > 0 \), the agent’s budget set is

\[
B(p, w) = \{ x \in R_+^l : p \cdot x \leq w \}.
\]
Demand Theory

At price (vector) \(p = (p_1, p_2, \ldots, p_l) \) in \(R^l_{++} \) (we also write \(p \gg 0 \)) and income \(w > 0 \), the agent's budget set is

\[
B(p, w) = \{ x \in R^l_+ : p \cdot x \leq w \}.
\]

A commodity bundle \(x^* \) is a demand bundle of the agent at \((p, w) \) if \(x^* \) maximizes utility in \(B(p, w) \); formally,

\[
x^* \in \argmax_{x \in B(p, w)} U(x).
\]
Demand Theory

At price (vector) \(p = (p_1, p_2, \ldots, p_l) \) in \(\mathbb{R}^{l+} \) (we also write \(p \gg 0 \)) and income \(w > 0 \), the agent’s budget set is

\[B(p, w) = \{ x \in \mathbb{R}^{l+} : p \cdot x \leq w \}. \]

A commodity bundle \(x^* \) is a demand bundle of the agent at \((p, w) \) if \(x^* \) maximizes utility in \(B(p, w) \); formally,

\[x^* \in \arg\max_{x \in B(p, w)} U(x). \]

Note that \(B(tp, tw) = B(p, w) \) for any \(t > 0 \), so

\[\arg\max_{x \in B(p, w)} U(x) = \arg\max_{x \in B(tp, tw)} U(x). \]
Demand Theory

Let \(x^* \in \text{argmax}_{x \in B(p,w)} U(x) \).

Quite easy to see that

(A) if \(U \) is increasing, then \(p \cdot x^* = w \). In this case, we say that the agent’s demand obeys the budget identity.

(B) if \(U \) is strictly quasiconcave, then \(\text{argmax}_{x \in B(p,w)} U(x) \) has at most one element.

(C) \(\text{argmax}_{x \in B(p,w)} U(x) \) is nonempty if \(U \) is a continuous function.

(This is a straightforward consequence of Weierstrass Theorem\(^a\))

\(^a\) **Weierstrass Theorem**: Suppose that \(K \) is a compact set in \(\mathbb{R}^l \) and \(F : K \to \mathbb{R} \) a continuous function. Then \(\text{arg max}_{x \in K} F(x) \) is nonempty.
Demand Theory

Result below summarizes (A)-(C) and more.

Proposition: Suppose that the utility function $U : \mathbb{R}^l_+ \rightarrow \mathbb{R}$ is (P1) continuous, (P2) strictly increasing, and (P3) strictly quasiconcave.

Then for any (p, w) in $\mathbb{R}^l_+ \times \mathbb{R}^*_+$, there exists a unique element x^* in $\arg\max_{x \in B(p, w)} U(x)$.

Lectures on General Equilibrium Theory
Demand Theory

Result below summarizes (A)-(C) and more.

Proposition: Suppose that the utility function \(U : \mathbb{R}_{++}^{l} \rightarrow \mathbb{R} \) is
(P1) continuous, (P2) strictly increasing, and (P3) strictly quasiconcave.

Then for any \((p, w)\) in \(\mathbb{R}_{++}^{l} \times \mathbb{R}_{++} \), there exists a unique element \(x^* \) in
\[\arg\max_{x \in B(p, w)} U(x). \]

The function \(\bar{x} : \mathbb{R}_{++}^{l} \times \mathbb{R}_{++} \rightarrow \mathbb{R}_{+} \) mapping
\((p, w)\) to \(\bar{x}(p, w) = \arg\max_{x \in B(p, w)} U(x) \) has the following properties:

(a) it is continuous,
(b) it obeys the budget identity [i.e., \(p \cdot \bar{x}(p, w) = w \)],
(c) it is zero-homogeneous, [i.e. \(\bar{x}(tp, tw) = \bar{x}(p, w) \) for any \(t > 0 \)] and
(d) it obeys this boundary condition: if \((p^n, w^n) \rightarrow (\bar{p}, \bar{w}) \) such that \(\bar{w} > 0 \) and \(I = \{i : \bar{p}_i = 0\} \) is nonempty, then

\[\sum_{i \in I} \bar{x}^a_i (p^n, w^n) \rightarrow \infty. \]
Exchange Economy

Assume that there is a finite set A of agents.

Agent $a \in A$ has the utility function $U^a : R_+^l \rightarrow R$ and endowment $\omega^a = (\omega_1^a, \omega_2^a, ..., \omega_l^a)$ in R_+^l.

We require U^a to obey (P1), (P2), and (P3), and that aggregate endowment

$$\bar{\omega} = \sum_{a \in A} \omega^a \gg 0.$$
Exchange Economy

Assume that there is a finite set A of agents.

Agent $a \in A$ has the utility function $U^a : \mathbb{R}_+ \rightarrow \mathbb{R}$ and endowment

$\omega^a = (\omega_1^a, \omega_2^a, \ldots, \omega_l^a)$ in \mathbb{R}_+^l.

We require U^a to obey (P1), (P2), and (P3), and that aggregate endowment

$$\bar{\omega} = \sum_{a \in A} \omega^a \gg 0.$$

Agent a’s demand function is \bar{x}^a.

Lectures on General Equilibrium Theory
Exchange Economy

Assume that there is a finite set A of agents.

Agent $a \in A$ has the utility function $U^a : R^l_+ \rightarrow R$ and endowment $\omega^a = (\omega_1^a, \omega_2^a, \ldots, \omega_l^a)$ in R^l_+.

We require U^a to obey (P1), (P2), and (P3), and that aggregate endowment

$$\bar{\omega} = \sum_{a \in A} \omega^a \gg 0.$$

Agent a’s demand function is \bar{x}^a.

In an exchange economy, income is determined by the prevailing price p. With an endowment of ω^a, agent a’s income $w^a = p \cdot \omega^a$.

Lectures on General Equilibrium Theory
Exchange Economy

Assume that there is a finite set \(A \) of agents.

Agent \(a \in A \) has the utility function \(U^a : \mathbb{R}_+^{l_a} \rightarrow \mathbb{R} \) and endowment \(\omega^a = (\omega^a_1, \omega^a_2, \ldots, \omega^a_l) \) in \(\mathbb{R}_+^l \).

We require \(U^a \) to obey (P1), (P2), and (P3), and that aggregate endowment

\[
\bar{\omega} = \sum_{a \in A} \omega^a \gg 0.
\]

Agent \(a \)'s demand function is \(\bar{x}^a \).

In an exchange economy, income is determined by the prevailing price \(p \). With an endowment of \(\omega^a \), agent \(a \)'s income \(w^a = p \cdot \omega^a \).

His demand at price \(p \) is \(\bar{x}^a(p, p \cdot \omega^a) \).
Exchange Economy

Assume that there is a finite set A of agents.

Agent $a \in A$ has the utility function $U^a : \mathbb{R}_+^l \rightarrow \mathbb{R}$ and endowment $\omega^a = (\omega^a_1, \omega^a_2, ..., \omega^a_l)$ in \mathbb{R}_+^l.

We require U^a to obey (P1), (P2), and (P3), and that aggregate endowment

$$\bar{\omega} = \sum_{a \in A} \omega^a \gg 0.$$

Agent a’s demand function is \bar{x}^a.

In an exchange economy, income is determined by the prevailing price p. With an endowment of ω^a, agent a’s income $w^a = p \cdot \omega^a$.

His demand at price p is $\bar{x}^a(p, p \cdot \omega^a)$.

Lectures on General Equilibrium Theory * * * The existence of equilibrium – p. 7/21
Exchange Economy

Define $\hat{x}^a : R_{++}^l \rightarrow R_+^l$ by $\hat{x}^a(p) = \bar{x}^a(p, p \cdot \omega^a)$.
Exchange Economy

Define $\hat{x}^a : R^l_{++} \to R^l_+$ by $\hat{x}^a(p) = \bar{x}^a(p, p \cdot \omega^a)$.

Agent a’s excess demand function is $z^a(p) = \hat{x}^a(p) - \omega^a$.
Define $\hat{x}^a : R_{++}^l \to R_+^l$ by $\hat{x}^a(p) = \bar{x}^a(p, p \cdot \omega^a)$.

Agent a’s excess demand function is $z^a(p) = \hat{x}^a(p) - \omega^a$.

Claim: z^a is zero-homogeneous, i.e., $z^a(\lambda p) = z^a(p)$ for any scalar $\lambda > 0$, and $p \cdot z^a(p) = 0$ for all p.

Exchange Economy
Exchange Economy

Define $\hat{x}^a : R^l_+ \to R_+^l$ by $\hat{x}^a(p) = \bar{x}^a(p, p \cdot \omega^a)$.

Agent a’s excess demand function is $z^a(p) = \hat{x}^a(p) - \omega^a$.

Claim: z^a is zero-homogeneous, i.e., $z^a(\lambda p) = z^a(p)$ for any scalar $\lambda > 0$, and $p \cdot z^a(p) = 0$ for all p.

Proof: $\bar{x}^a(p, w) = \text{argmax}_{x \in B(p, w)} U^a(x)$ is zero-homogeneous so

$$\hat{x}^a(\lambda p) = \bar{x}^a(\lambda p, (\lambda p) \cdot \omega^a) = \bar{x}^a(p, p \cdot \omega^a) = \hat{x}^a(p)$$

which in turn guarantees that $z^a(\lambda p) = z^a(p)$.
Exchange Economy

Define \(\hat{x}^a : \mathbb{R}^{l+} \to \mathbb{R}^{l+} \) by \(\hat{x}^a(p) = \bar{x}^a(p, p \cdot \omega^a) \).

Agent \(a \)'s excess demand function is \(z^a(p) = \hat{x}^a(p) - \omega^a \).

Claim: \(z^a \) is zero-homogeneous, i.e., \(z^a(\lambda p) = z^a(p) \) for any scalar \(\lambda > 0 \), and \(p \cdot z^a(p) = 0 \) for all \(p \).

Proof: \(\bar{x}^a(p, w) = \arg\max_{x \in B(p, w)} U^a(x) \) is zero-homogeneous so

\[
\hat{x}^a(\lambda p) = \bar{x}^a(\lambda p, (\lambda p) \cdot \omega^a) = \bar{x}^a(p, p \cdot \omega^a) = \hat{x}^a(p)
\]

which in turn guarantees that \(z^a(\lambda p) = z^a(p) \).

Since \(p \cdot \bar{x}^a(p, p \cdot \omega^a) = p \cdot \omega^a \), we have

\[
p \cdot [\bar{x}^a(p, p \cdot \omega^a) - \omega^a] = 0.
\]

So \(p \cdot z^a(p) = 0 \). QED
Exchange Economy

Aggregate (or market) demand at price p is

$$X(p) = \sum_{a \in A} \hat{x}^a(p).$$

Aggregate excess demand function $Z : R^l_{++} \rightarrow R^l$ is

$$Z(p) = X(p) - \bar{\omega}.$$
Exchange Economy

Aggregate (or market) demand at price p is

$$X(p) = \sum_{a \in A} \hat{x}^a(p).$$

Aggregate excess demand function $Z : R^l_{++} \rightarrow R^l$ is

$$Z(p) = X(p) - \bar{\omega}.$$

Z is zero-homogeneous and obeys Walras’ Law, $p \cdot Z(p) = 0$ for all p. Both inherited from z^a, obviously.
Exchange Economy

Aggregate (or market) demand at price p is

$$X(p) = \sum_{a \in A} \hat{x}^a(p).$$

Aggregate excess demand function $Z : R^l_+ \rightarrow R^l$ is

$$Z(p) = X(p) - \bar{\omega}.$$

Z is zero-homogeneous and obeys Walras’ Law, $p \cdot Z(p) = 0$ for all p. Both inherited from z^a, obviously.

Fundamental Question: What conditions guarantee that there is $p^* \gg 0$ such that $Z(p^*) = 0$?
Exchange Economy

Aggregate (or market) demand at price p is

$$X(p) = \sum_{a \in A} \hat{x}^a(p).$$

Aggregate excess demand function $Z : R^{l+}_+ \to R^l$ is

$$Z(p) = X(p) - \bar{\omega}.$$

Z is zero-homogeneous and obeys Walras’ Law, $p \cdot Z(p) = 0$ for all p. Both inherited from z^a, obviously.

Fundamental Question: What conditions guarantee that there is $p^* \gg 0$ such that $Z(p^*) = 0$?

Note that, since Z is zero-homogeneous, if p^* is an equilibrium price so is λp^* for any $\lambda > 0$.

Lectures on General Equilibrium Theory * * * The existence of equilibrium – p. 9/21
Exchange Economy

With two agents A and B and two goods:

Agent A’s utility function $U^A(x_1, x_2) = \ln x_1 + 2 \ln x_2$.
Exchange Economy

With two agents A and B and two goods:

Agent A’s utility function $U^A(x_1, x_2) = \ln x_1 + 2 \ln x_2$.

Demand function $\bar{x}^A(p, w) = \left(\frac{w}{3p_1}, \frac{2w}{3p_2} \right)$.
Exchange Economy

With two agents A and B and two goods:

Agent A’s utility function $U^A(x_1, x_2) = \ln x_1 + 2 \ln x_2$.

Demand function $\bar{x}^A(p, w) = \left(\frac{w}{3p_1}, \frac{2w}{3p_2} \right)$.

Endowment $\omega^A = (1, 0)$, so $w^A = p_1$, and

$\hat{x}^A(p) = \left(\frac{1}{3}, \frac{2p_1}{3p_2} \right)$.

Lectures on General Equilibrium Theory ★ ★ ★ The existence of equilibrium – p. 10/21
Exchange Economy

With two agents A and B and two goods:

Agent A’s utility function $U^A(x_1, x_2) = \ln x_1 + 2 \ln x_2$.

Demand function $\bar{x}^A(p, w) = \left(\frac{w}{3p_1}, \frac{2w}{3p_2} \right)$.

Endowment $\omega^A = (1, 0)$, so $w^A = p_1$, and

$$\hat{x}^A(p) = \left(\frac{1}{3}, \frac{2p_1}{3p_2} \right).$$

Assume that agent B’s utility function is $U^B(x_1, x_2) = 2 \ln x_1 + \ln x_2$ and that his endowment is $(0, 1)$.
Exchange Economy

Exercise: show that

\[Z(p) = \left(-\frac{2}{3} + \frac{2p_2}{3p_1}, \frac{2p_1}{3p_2} - \frac{2}{3} \right). \]

Setting \(Z_1(p) = 0 \) we obtain \(p_1 = p_2 \).
Exchange Economy

Exercise: show that

\[Z(p) = \left(-\frac{2}{3} + \frac{2p_2}{3p_1}, \frac{2p_1}{3p_2} - \frac{2}{3} \right). \]

Setting \(Z_1(p) = 0 \) we obtain \(p_1 = p_2 \).
Setting \(Z_2(p) = 0 \) we obtain \(p_1 = p_2 \).
Exchange Economy

Exercise: show that

\[Z(p) = \left(-\frac{2}{3} + \frac{2p_2}{3p_1}, \frac{2p_1}{3p_2} - \frac{2}{3} \right). \]

Setting \(Z_1(p) = 0 \) we obtain \(p_1 = p_2 \).

Setting \(Z_2(p) = 0 \) we obtain \(p_1 = p_2 \).

Equilibrium price is \((\lambda, \lambda)\) for any \(\lambda > 0 \).
Exchange Economy

Exercise: show that

\[
Z(p) = \left(-\frac{2}{3} + \frac{2p_2}{3p_1}, \frac{2p_1}{3p_2} - \frac{2}{3} \right).
\]

Setting \(Z_1(p) = 0 \) we obtain \(p_1 = p_2 \).
Setting \(Z_2(p) = 0 \) we obtain \(p_1 = p_2 \).

Equilibrium price is \((\lambda, \lambda)\) for any \(\lambda > 0 \).

Note: if at \(p^* \), we have \(Z_1(p^*) = 0 \) then \(Z_2(p^*) = 0 \). This follows from Walras’ Law, which says that \(p_1^* Z_1(p^*) + p_2^* Z_2(p^*) = 0 \).
Exchange Economy

Exercise: show that

\[Z(p) = \left(-\frac{2}{3} + \frac{2p_2}{3p_1}, \frac{2p_1}{3p_2} - \frac{2}{3} \right). \]

Setting \(Z_1(p) = 0 \) we obtain \(p_1 = p_2 \).

Setting \(Z_2(p) = 0 \) we obtain \(p_1 = p_2 \).

Equilibrium price is \((\lambda, \lambda)\) for any \(\lambda > 0 \).

Note: if at \(p^* \), we have \(Z_1(p^*) = 0 \) then \(Z_2(p^*) = 0 \). This follows from Walras’ Law, which says that \(p_1^* Z_1(p^*) + p_2^* Z_2(p^*) = 0 \).
Clear from picture that the existence of a solution to \(Z(p) = 0\) requires the \textit{continuity} of \(Z\) and also the right \textit{boundary condition} ...

Continuity of \(Z\) is guaranteed if \(\bar{x}^a\) is continuous for all \(a\). This is in turn guaranteed by (P1) (the continuity of \(U^a\) for all agents \(a\)).

Recall the boundary property satisfied by \(\bar{x}_a\): if \((p^n, w^n) \rightarrow (\bar{p}, \bar{w})\) such that \(\bar{w} > 0\) and \(I = \{i : \bar{p}_i = 0\}\) is nonempty, then

\[
\sum_{i \in I} \bar{x}^a_i (p^n, w^n) \rightarrow \infty.
\]
Clear from picture that the existence of a solution to $Z(p) = 0$ requires the continuity of Z and also the right boundary condition ...

Continuity of Z is guaranteed if \bar{x}^a is continuous for all a. This is in turn guaranteed by (P1) (the continuity of U^a for all agents a).

Recall the boundary property satisfied by \bar{x}_a: if $(p^n, w^n) \to (\bar{p}, \bar{w})$ such that $\bar{w} > 0$ and $I = \{i : \bar{p}_i = 0\}$ is nonempty, then

$$\sum_{i \in I} \bar{x}_i^a (p^n, w^n) \to \infty.$$

Example: Cobb-Douglas demand for good j is $\alpha_j \frac{w^n}{p_j}$. Clearly tends to infinity if $p_j \to 0$ and $w^n \to \bar{w}$, with $\bar{w} > 0$.
Exchange Economy

Clear from picture that the existence of a solution to $Z(p) = 0$ requires the continuity of Z and also the right boundary condition...

Continuity of Z is guaranteed if \bar{x}^a is continuous for all a. This is in turn guaranteed by (P1) (the continuity of U^a for all agents a).

Recall the boundary property satisfied by \bar{x}_a: if $(p^n, w^n) \rightarrow (\bar{p}, \bar{w})$ such that $\bar{w} > 0$ and $I = \{i : \bar{p}_i = 0\}$ is nonempty, then

$$\sum_{i \in I} \bar{x}_i^a(p^n, w^n) \rightarrow \infty.$$

Example: Cobb-Douglas demand for good j is $\alpha_j \frac{w^n}{p_j}$. Clearly tends to infinity if $p_j \rightarrow 0$ and $w^n \rightarrow \bar{w}$, with $\bar{w} > 0$.

The requirement that $\bar{w} > 0$ is crucial. Compare $p^n = (1, \frac{1}{n})$ with $\omega = (1, 0)$ and $\omega = (0, 1)$; w^n tends to 1 in the first case and 0 in the second...
Corollary: In economy \mathcal{E}, suppose p^n tends to $\bar{p} \neq 0$, such that $I = \{i : \bar{p}_i = 0\}$ is nonempty. Then $\sum_{i \in I} Z_i(p^n) \to \infty$.
Exchange Economy

Corollary: In economy E, suppose p^n tends to $\bar{p} \neq 0$, such that $I = \{i : p_i = 0\}$ is nonempty. Then $\sum_{i \in I} Z_i(p^n) \to \infty$.

Proof: Suppose that for good k, $\bar{p}_k > 0$. Since $\bar{\omega} = \sum_{a \in A} \omega^a \gg 0$, there is \tilde{a} with $\omega^\tilde{a}_k > 0$. (In other words, there is some agent \tilde{a} who has a strictly positive endowment of good k.) Then $p^n \cdot \omega^\tilde{a}$ tends to $\bar{\omega}^\tilde{a} = \bar{p} \cdot \omega^\tilde{a} > 0$.
Corollary: In economy \(E \), suppose \(p^n \) tends to \(\bar{p} \neq 0 \), such that \(I = \{ i : \bar{p}_i = 0 \} \) is nonempty. Then \(\sum_{i \in I} Z_i(p^n) \to \infty \).

Proof: Suppose that for good \(k, \bar{p}_k > 0 \). Since \(\bar{\omega} = \sum_{a \in A} \omega^a \gg 0 \), there is \(\tilde{a} \) with \(\omega^\tilde{a}_k > 0 \). (In other words, there is some agent \(\tilde{a} \) who has a strictly positive endowment of good \(k \).) Then \(p^n \cdot \omega^{\tilde{a}} \) tends to \(\bar{\omega}^{\tilde{a}} = \bar{p} \cdot \omega^{\tilde{a}} > 0 \).

So \(\sum_{i \in I} \hat{x}_{i}^{\tilde{a}}(p^n) = \sum_{i \in I} \bar{x}_{i}^{\tilde{a}}(p^n, p^n \cdot \omega^{\tilde{a}}) \to \infty \), which implies that

\[
\sum_{i \in I} Z_i(p^n) = \sum_{i \in I} X_i(p^n) - \sum_{i \in I} \bar{\omega}_i \\
\geq \sum_{i \in I} \bar{x}_{i}^{\tilde{a}}(p^n, p^n \cdot \omega^{\tilde{a}}) - \sum_{i \in I} \bar{\omega}_i \to \infty.
\]

QED
Exchange Economy

Theorem: The excess demand function $Z : R^l_+ \rightarrow R^l$ of the economy E has the following properties:

- it is zero-homogenous,
Theorem: The excess demand function $Z : R^{l+} \rightarrow R^l$ of the economy \mathcal{E} has the following properties:

- it is zero-homogenous,
- it obeys Walras’ Law,
Theorem: The excess demand function $Z : R^l_{++} \rightarrow R^l$ of the economy E has the following properties:

- it is zero-homogenous,
- it obeys Walras’ Law,
- it is continuous,
Theorem: The excess demand function $Z : R^{l+} \rightarrow R^l$ of the economy E has the following properties:

- it is zero-homogenous,
- it obeys Walras’ Law,
- it is continuous,
- it satisfies the boundary condition,
Theorem: The excess demand function \(Z : R^{l+} \rightarrow R^l \) of the economy \(\mathcal{E} \) has the following properties:

- it is zero-homogenous,
- it obeys Walras’ Law,
- it is continuous,
- it satisfies the boundary condition,
- it is bounded below.
Exchange Economy

Theorem: The excess demand function $Z : R^l_{++} \rightarrow R^l$ of the economy E has the following properties:

- it is zero-homogenous,
- it obeys Walras’ Law,
- it is continuous,
- it satisfies the boundary condition,
- it is bounded below.

Note: Clear that Z is bounded below since

$$Z(p) = X(p) - \bar{\omega} > -\bar{\omega}.$$
Exchange Economy

Theorem: The excess demand function $Z : \mathbb{R}_{++}^l \rightarrow \mathbb{R}^l$ of the economy E has the following properties:

- it is zero-homogenous,
- it obeys Walras’ Law,
- it is continuous,
- it satisfies the boundary condition,
- it is bounded below.

Note: Clear that Z is bounded below since

$$Z(p) = X(p) - \bar{\omega} > -\bar{\omega}.$$
Exchange Economy

Theorem (Arrow and Debreu; McKenzie): Suppose Z satisfies properties (1) to (5). Then there is p^* such that $Z(p^*) = 0$.

Proof uses Kakutani’s fixed point theorem, which generalizes Brouwer’s fixed point theorem to correspondences.

Brouwer’s fixed point theorem is a (far-reaching) generalization of the intermediate value theorem.
Exchange Economy

Theorem (Arrow and Debreu; McKenzie): Suppose Z satisfies properties (1) to (5). Then there is p^* such that $Z(p^*) = 0$.

Proof uses Kakutani’s fixed point theorem, which generalizes Brouwer’s fixed point theorem to correspondences.

Brouwer’s fixed point theorem is a (far-reaching) generalization of the intermediate value theorem.

Intermediate value theorem Let f be a continuous function defined on some interval $[a, b]$. If $f(a)$ and $f(b)$ are of different signs, then there is $c \in [a, b]$ such that $f(c) = 0$.
Exchange Economy

When the economy has just two goods, existence can be proved using the intermediate value theorem.

Consider the function $Z_2(1, \cdot) : R_{++} \to R$.
When the economy has just two goods, existence can be proved using the intermediate value theorem.

Consider the function $Z_2(1, \cdot) : \mathbb{R}^{++} \rightarrow \mathbb{R}$.

First note that as $p \to 0$, we have $Z_2(1, p) \to \infty$, so there is p' such that $Z_2(1, p') > 0$.

Exchange Economy

When the economy has just two goods, existence can be proved using the intermediate value theorem.

Consider the function \(Z_2(1, \cdot) : \mathbb{R}_{++} \rightarrow \mathbb{R} \).

First note that as \(p \rightarrow 0 \), we have \(Z_2(1, p) \rightarrow \infty \), so there is \(p' \) such that \(Z_2(1, p') > 0 \).

Now consider \(p \rightarrow \infty \).

Then \(Z_1(1, p) = Z_1(\frac{1}{p}, 1) \rightarrow \infty \). In particular, there is \(p'' \) such that \(Z_1(1, p'') > 0 \). This implies that \(Z_2(1, p'') < 0 \) (by Walras’ Law).
Exchange Economy

When the economy has just two goods, existence can be proved using the intermediate value theorem.

Consider the function $Z_2(1, \cdot) : R_{++} \to R$.

First note that as $p \to 0$, we have $Z_2(1, p) \to \infty$, so there is p' such that $Z_2(1, p') > 0$.

Now consider $p \to \infty$.

Then $Z_1(1, p) = Z_1(\frac{1}{p}, 1) \to \infty$. In particular, there is p'' such that $Z_1(1, p'') > 0$. This implies that $Z_2(1, p'') < 0$ (by Walras’ Law).

So there is p' and p'' such that $Z_2(1, p') > 0$ and $Z_2(1, p'') < 0$. By IVT, there is p^* such that $Z_2(1, p^*) = 0$. QED
Brouwer’s fixed point theorem

Intermediate value theorem can be re-stated as a fixed point theorem.

Theorem Let K be a compact (i.e., closed and bounded) interval and suppose that $\phi : K \rightarrow K$ is a continuous function. Then there is $x^* \in K$ such that $\phi(x^*) = x^*$.
Brouwer’s fixed point theorem

Intermediate value theorem can be re-stated as a fixed point theorem.

Theorem Let K be a compact (i.e., closed and bounded) interval and suppose that $\phi : K \rightarrow K$ is a continuous function. Then there is $x^* \in K$ such that $\phi(x^*) = x^*$.

Brouwer’s fixed point theorem Let K be a compact and convex set in \mathbb{R}^l and suppose that the function $\phi : K \rightarrow K$ is continuous. Then there is x^* such that $\phi(x^*) = x^*$.

Lectures on General Equilibrium Theory
Proof of equilibrium existence

We present a simple proof of equilibrium existence in the case where \(\omega_a \gg 0 \) for all \(a \).

Define \(\tilde{B}(p, a) = B(p, p \cdot \omega_a) \cap \{ x \leq 2\bar{\omega} \} \).
This is a truncated budget set for agent \(a \).
Proof of equilibrium existence

We present a simple proof of equilibrium existence in the case where \(\omega_a \gg 0 \) for all \(a \).

Define \(\tilde{B}(p,a) = B(p, p \cdot \omega_a) \cap \{x \leq 2\bar{\omega}\} \).
This is a truncated budget set for agent \(a \).

Assuming (P1), (P2), and (P3), then \(\arg\max_{x \in \tilde{B}(p,a)} U^a(x) \) exists and is unique for all \(p \in \Delta = \{ p > 0 : \sum_{i=1}^l p_i = 1 \} \).
We denote this (modified demand) by \(\tilde{x}^a(p) \).
Proof of equilibrium existence

We present a simple proof of equilibrium existence in the case where \(\omega_a \gg 0 \) for all \(a \).

Define \(\tilde{B}(p, a) = B(p, p \cdot \omega_a) \cap \{ x \leq 2\bar{\omega} \} \).
This is a truncated budget set for agent \(a \).

Assuming (P1), (P2), and (P3), then \(\arg\max_{x \in \tilde{B}(p, a)} U^a(x) \) exists and is unique for all \(p \in \Delta = \{ p > 0 : \sum_{i=1}^l p_i = 1 \} \).
We denote this (modified demand) by \(\tilde{x}^a(p) \).

The crucial feature of \(\tilde{x}^a \) that makes it useful is that it is also defined on the boundary of \(\Delta \) (the unit simplex), unlike \(\hat{x}^a \) which is defined only in the interior of \(\Delta \).
Proof of equilibrium existence

We present a simple proof of equilibrium existence in the case where \(\omega_a \gg 0 \) for all \(a \).

Define \(\tilde{B}(p, a) = B(p, p \cdot \omega_a) \cap \{x \leq 2\omega\} \).
This is a truncated budget set for agent \(a \).

Assuming (P1), (P2), and (P3), then \(\arg\max_{x \in \tilde{B}(p,a)} U^a(x) \) exists and is unique for all \(p \in \Delta = \{p > 0 : \sum_{i=1}^{l} p_i = 1\} \).
We denote this (modified demand) by \(\tilde{x}^a(p) \).

The crucial feature of \(\tilde{x}^a \) that makes it useful is that it is also defined on the boundary of \(\Delta \) (the unit simplex), unlike \(\hat{x}^a \) which is defined only in the interior of \(\Delta \).

Note that \(\tilde{x}^a \) satisfies \(p \cdot \tilde{x}^a(p) = p \cdot \omega^a \). Furthermore, \(\tilde{x}^a \) is continuous in \(p \). (This property relies crucially on \(\omega^a \gg 0 \) – can you see why?)
Proof of equilibrium existence

Therefore, map $\tilde{Z} : \Delta \to \mathbb{R}^l$ defined by

$$\tilde{Z}(p) = \sum_{a \in A} [\tilde{x}^a(p) - \omega^a]$$

is continuous and obeys Walras’ Law.

Lemma 1 There is $p^* \gg 0$ such that $\tilde{Z}(p^*) = 0$.

Lemma 2 If there is $p^* \gg 0$ such that $\tilde{Z}(p^*) = 0$, then $Z(p^*) = 0$.
Proof of equilibrium existence

Therefore, map \(\tilde{Z} : \Delta \to R^l \) defined by

\[
\tilde{Z}(p) = \sum_{a \in A} [\tilde{x}^a(p) - \omega^a]
\]

is continuous and obeys Walras’ Law.

Lemma 1 There is \(p^* \gg 0 \) such that \(\tilde{Z}(p^*) = 0 \).

Lemma 2 If there is \(p^* \gg 0 \) such that \(\tilde{Z}(p^*) = 0 \), then \(Z(p^*) = 0 \).

Proof of Lemma 1: Define \(\psi : \Delta \to \Delta \) by

\[
\psi_j(p) = \frac{p_j + \max\{\tilde{Z}_j(p), 0\}}{1 + \sum_{i=1}^l \max\{\tilde{Z}_i(p), 0\}} \quad \text{for all } j.
\]

\(\Delta \) is compact and convex set and this map is continuous. Brouwer’s theorem guarantees that there is \(p^* \) such that \(\psi(p^*) = p^* \).
Proof of equilibrium existence

Therefore, map $\tilde{Z} : \Delta \to \mathbb{R}^l$ defined by

$$\tilde{Z}(p) = \sum_{a \in A} [\tilde{x}^a(p) - \omega^a]$$

is continuous and obeys Walras’ Law.

Lemma 1 There is $p^* \gg 0$ such that $\tilde{Z}(p^*) = 0$.

Lemma 2 If there is $p^* \gg 0$ such that $\tilde{Z}(p^*) = 0$, then $Z(p^*) = 0$.

Proof of Lemma 1: Define $\psi : \Delta \to \Delta$ by

$$\psi_j(p) = \frac{p_j + \max\{\tilde{Z}_j(p), 0\}}{1 + \sum_{i=1}^l \max\{\tilde{Z}_i(p), 0\}}$$

for all j.

Δ is compact and convex set and this map is continuous. Brouwer’s theorem guarantees that there is p^* such that $\psi(p^*) = p^*$.

If $p^*_k = 0$ for some k, then $\max\{\tilde{Z}_k(p^*), 0\} > 0$ and so $\psi_k(p^*) \neq p^*_k = 0$ – contradiction.
Proof of equilibrium existence

So \(p^* \gg 0 \). By Walras’ Law, there is \(h \) such that \(\max\{\tilde{Z}_h(p^*), 0\} = 0 \).

Since \(\psi(p^*) = p^* \), in particular,

\[
p_h^* = \psi_h(p^*) = \frac{p_h^* + 0}{1 + \sum_{i=1}^{l} \max\{\tilde{Z}_i(p), 0\}}.
\]

This gives

\[
\sum_{i=1}^{l} \max\{\tilde{Z}_i(p), 0\} = 0,
\]

so \(\tilde{Z}_i(p^*) \leq 0 \) for all \(i \). By Walras’ Law and the fact that \(p^* \gg 0 \), we have \(\tilde{Z}_i^*(p^*) = 0 \) for all \(i \).

QED
Proof of equilibrium existence

Lemma 2 If there is \(p^* \gg 0 \) such that \(\tilde{Z}(p^*) = 0 \), then \(Z(p^*) = 0 \).

Proof: We claim that \(\hat{x}^a(p^*) = \tilde{x}^a(p^*) \) for all agents. Clearly, this implies that \(Z(p^*) = \tilde{Z}(p^*) = 0 \).

Suppose, to the contrary, that for some agent \(b \), \(\hat{x}^b(p^*) \neq \tilde{x}^b(p^*) \), which means that \(\hat{x}^b(p^*) \) is not less than \(2\bar{\omega} \) and \(U^b(\hat{x}^b(p^*)) > U^b(\tilde{x}^b(p^*)) \).

Since \(\tilde{Z}(p^*) = 0 \), it must be the case that \(\tilde{x}^b(p^*) \ll 2\bar{\omega} \).
Proof of equilibrium existence

Lemma 2 If there is $p^* \gg 0$ such that $\tilde{Z}(p^*) = 0$, then $Z(p^*) = 0$.

Proof: We claim that $\hat{x}^a(p^*) = \tilde{x}^a(p^*)$ for all agents. Clearly, this implies that $Z(p^*) = \tilde{Z}(p^*) = 0$.

Suppose, to the contrary, that for some agent b, $\hat{x}^b(p^*) \neq \tilde{x}^b(p^*)$, which means that $\hat{x}^b(p^*)$ is not less than $2\bar{\omega}$ and $U^b(\hat{x}^b(p^*)) > U^b(\tilde{x}^b(p^*))$.

Since $\tilde{Z}(p^*) = 0$, it must be the case that $\tilde{x}^b(p^*) \ll 2\bar{\omega}$.

Choose $t \in (0, 1)$ such that $x = t\tilde{x}^b(p^*) + (1 - t)\hat{x}^b(p^*)$ satisfies $x \ll 2\bar{\omega}$.

Note that $U^b(x) > U^b(\tilde{x}^b(p^*))$ (by the strict quasiconcavity of U^b) and that $x \in \tilde{B}(p^*, b)$.

This contradicts the optimality of $\tilde{x}^b(p^*)$ in $\tilde{B}(p^*, b)$. QED